Stéphanie Kamgnia Wonkap
commited on
Commit
·
3504448
1
Parent(s):
58e5d73
fixing indention in app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,13 @@
|
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
import yaml
|
5 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
6 |
from dotenv import load_dotenv
|
7 |
import torch
|
8 |
from src.generator import answer_with_rag
|
9 |
from ragatouille import RAGPretrainedModel
|
10 |
from src.data_preparation import split_documents
|
11 |
from src.embeddings import init_embedding_model
|
12 |
-
from langchain_nvidia_ai_endpoints
|
13 |
|
14 |
from transformers import pipeline
|
15 |
from langchain_community.document_loaders import PyPDFLoader
|
@@ -70,58 +69,21 @@ def main():
|
|
70 |
st.session_state.embedding_model=NVIDIAEmbeddings()
|
71 |
st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed,
|
72 |
st.session_state.embedding_model)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# VECTORDB_PATH, embedding_model,
|
77 |
-
# allow_dangerous_deserialization=True)
|
78 |
-
#else:
|
79 |
-
#KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model)
|
80 |
-
# KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH)
|
81 |
-
|
82 |
-
|
83 |
-
if st.button("Get Answer"):
|
84 |
-
# Get the answer and relevant documents
|
85 |
-
#bnb_config = BitsAndBytesConfig(
|
86 |
-
#load_in_8bit=True
|
87 |
-
# load_in_4bit=True,
|
88 |
-
# bnb_4bit_use_double_quant=True,
|
89 |
-
# bnb_4bit_quant_type="nf4",
|
90 |
-
# bnb_4bit_compute_dtype=torch.bfloat16,
|
91 |
-
#)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
#READER_LLM = pipeline(
|
104 |
-
# model=model,
|
105 |
-
# tokenizer=tokenizer,
|
106 |
-
# task="text-generation",
|
107 |
-
# do_sample=True,
|
108 |
-
# temperature=0.2,
|
109 |
-
# repetition_penalty=1.1,
|
110 |
-
# return_full_text=False,
|
111 |
-
# max_new_tokens=500,
|
112 |
-
# token = os.getenv("HF_TOKEN")
|
113 |
-
# )
|
114 |
-
# RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME)
|
115 |
-
# num_doc_before_rerank=15
|
116 |
-
# num_final_releveant_docs=5
|
117 |
-
# answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True)
|
118 |
-
#print(answer)
|
119 |
-
|
120 |
-
|
121 |
-
# Display the answer
|
122 |
st.write("### Answer:")
|
123 |
st.write(answer)
|
124 |
-
|
125 |
# Display the relevant documents
|
126 |
st.write("### Relevant Documents:")
|
127 |
for i, doc in enumerate(relevant_docs):
|
|
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
import yaml
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
import torch
|
7 |
from src.generator import answer_with_rag
|
8 |
from ragatouille import RAGPretrainedModel
|
9 |
from src.data_preparation import split_documents
|
10 |
from src.embeddings import init_embedding_model
|
11 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
12 |
|
13 |
from transformers import pipeline
|
14 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
69 |
st.session_state.embedding_model=NVIDIAEmbeddings()
|
70 |
st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed,
|
71 |
st.session_state.embedding_model)
|
72 |
+
if (user_query) and (st.button("Get Answer")):
|
73 |
+
num_doc_before_rerank=15
|
74 |
+
st.session_state.retriever= st.session_state.KNOWLEDGE_VECTOR_DATABASE.as_retriever(search_type="similarity",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
st.write("### Please wait while we are getting the answer.....") search_kwargs={"k": num_doc_before_rerank})
|
77 |
+
llm = ChatNVIDIA(
|
78 |
+
model=READER_MODEL_NAME,
|
79 |
+
api_key= os.get("NVIDIA_API_KEY"),
|
80 |
+
temperature=0.2,
|
81 |
+
top_p=0.7,
|
82 |
+
max_tokens=1024,
|
83 |
+
)
|
84 |
+
answer, relevant_docs = answer_with_rag(query=user_query, llm=llm, retriever=st.session_state.retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
st.write("### Answer:")
|
86 |
st.write(answer)
|
|
|
87 |
# Display the relevant documents
|
88 |
st.write("### Relevant Documents:")
|
89 |
for i, doc in enumerate(relevant_docs):
|