Spaces:
Sleeping
Sleeping
Stéphanie Kamgnia Wonkap
commited on
Commit
•
7469d7c
1
Parent(s):
3e70cf2
fixing app.py
Browse files- app.py +3 -3
- src/data_preparation.py +17 -13
app.py
CHANGED
@@ -61,16 +61,16 @@ def main():
|
|
61 |
" ",
|
62 |
"",]
|
63 |
st.session_state.docs_processed = split_documents(
|
64 |
-
|
65 |
st.session_state.raw_document_base,
|
66 |
#tokenizer_name=EMBEDDING_MODEL_NAME,
|
67 |
separator=st.session_state.MARKDOWN_SEPARATORS
|
68 |
)
|
69 |
-
st.session_state.embedding_model=NVIDIAEmbeddings()
|
70 |
st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed,
|
71 |
st.session_state.embedding_model)
|
72 |
if (user_query) and (st.button("Get Answer")):
|
73 |
-
num_doc_before_rerank=
|
74 |
st.session_state.retriever= st.session_state.KNOWLEDGE_VECTOR_DATABASE.as_retriever(search_type="similarity",
|
75 |
search_kwargs={"k": num_doc_before_rerank})
|
76 |
|
|
|
61 |
" ",
|
62 |
"",]
|
63 |
st.session_state.docs_processed = split_documents(
|
64 |
+
400, # We choose a chunk size adapted to our model
|
65 |
st.session_state.raw_document_base,
|
66 |
#tokenizer_name=EMBEDDING_MODEL_NAME,
|
67 |
separator=st.session_state.MARKDOWN_SEPARATORS
|
68 |
)
|
69 |
+
st.session_state.embedding_model=NVIDIAEmbeddings(model="NV-Embed-QA", truncate="END")
|
70 |
st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed,
|
71 |
st.session_state.embedding_model)
|
72 |
if (user_query) and (st.button("Get Answer")):
|
73 |
+
num_doc_before_rerank=5
|
74 |
st.session_state.retriever= st.session_state.KNOWLEDGE_VECTOR_DATABASE.as_retriever(search_type="similarity",
|
75 |
search_kwargs={"k": num_doc_before_rerank})
|
76 |
|
src/data_preparation.py
CHANGED
@@ -12,31 +12,35 @@ from typing import List, Optional
|
|
12 |
#from langchain import HuggingFacePipeline
|
13 |
#from langchain.chains import RetrievalQA
|
14 |
|
15 |
-
EMBEDDING_MODEL_NAME = "OrdalieTech/Solon-embeddings-large-0.1"
|
16 |
|
17 |
|
18 |
def split_documents(
|
19 |
chunk_size: int,
|
20 |
knowledge_base: List[LangchainDocument],
|
21 |
-
tokenizer_name: Optional[str] = EMBEDDING_MODEL_NAME,
|
22 |
separator:List[str]=None,
|
23 |
) -> List[LangchainDocument]:
|
24 |
"""
|
25 |
Split documents into chunks of maximum size `chunk_size` tokens and return a list of documents.
|
26 |
"""
|
27 |
-
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
|
|
|
|
|
|
|
|
35 |
|
36 |
docs_processed = []
|
37 |
-
for doc in knowledge_base:
|
38 |
-
|
39 |
-
|
40 |
# Remove duplicates
|
41 |
unique_texts = {}
|
42 |
docs_processed_unique = []
|
|
|
12 |
#from langchain import HuggingFacePipeline
|
13 |
#from langchain.chains import RetrievalQA
|
14 |
|
15 |
+
#EMBEDDING_MODEL_NAME = "OrdalieTech/Solon-embeddings-large-0.1"
|
16 |
|
17 |
|
18 |
def split_documents(
|
19 |
chunk_size: int,
|
20 |
knowledge_base: List[LangchainDocument],
|
21 |
+
#tokenizer_name: Optional[str] = EMBEDDING_MODEL_NAME,
|
22 |
separator:List[str]=None,
|
23 |
) -> List[LangchainDocument]:
|
24 |
"""
|
25 |
Split documents into chunks of maximum size `chunk_size` tokens and return a list of documents.
|
26 |
"""
|
27 |
+
#text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
28 |
+
# AutoTokenizer.from_pretrained(tokenizer_name),
|
29 |
+
# chunk_size=chunk_size,
|
30 |
+
# chunk_overlap=int(chunk_size / 10),
|
31 |
+
# add_start_index=True,
|
32 |
+
# strip_whitespace=True,
|
33 |
+
# separators=separator,
|
34 |
+
#)
|
35 |
+
text_splitter= RecursiveCharacterTextSplitter( chunk_size=chunk_size,
|
36 |
+
chunk_overlap=int(chunk_size / 10),
|
37 |
+
strip_whitespace=True,
|
38 |
+
separators=separator)
|
39 |
|
40 |
docs_processed = []
|
41 |
+
#for doc in knowledge_base:
|
42 |
+
# docs_processed += text_splitter.split_documents([doc])
|
43 |
+
docs_processed=text_splitter.split_documents(knowledge_base)
|
44 |
# Remove duplicates
|
45 |
unique_texts = {}
|
46 |
docs_processed_unique = []
|