Stéphanie Kamgnia Wonkap
commited on
Commit
·
a6e92fe
1
Parent(s):
8efbea2
initial commit
Browse files- .gitattributes +1 -0
- .gitignore +4 -0
- README.md +1 -1
- app.py +108 -0
- config.yml +5 -0
- data/college_pediatrie_2024.pdf +3 -0
- requirements.txt +586 -0
- src/__init__.py +0 -0
- src/app.py +108 -0
- src/config.yml +5 -0
- src/data_preparation.py +48 -0
- src/embeddings.py +15 -0
- src/generator.py +53 -0
- src/retriever.py +41 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.pdf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#env files
|
2 |
+
.env
|
3 |
+
#virtual env
|
4 |
+
venv
|
README.md
CHANGED
@@ -7,7 +7,7 @@ sdk: streamlit
|
|
7 |
sdk_version: 1.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 1.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: Un rag pour explorer le livre le collège de pediatrie
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Databricks notebook source
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
import yaml
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from src.generator import answer_with_rag
|
7 |
+
from ragatouille import RAGPretrainedModel
|
8 |
+
from src.data_preparation import split_documents
|
9 |
+
from transformers import pipeline
|
10 |
+
from langchain_community.document_loaders import PyPDFLoader
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
from src.retriever import init_vectorDB_from_doc, retriever
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
14 |
+
from langchain_community.vectorstores import FAISS
|
15 |
+
import faiss
|
16 |
+
def load_config():
|
17 |
+
with open("./src/config.yml","r") as file_object:
|
18 |
+
try:
|
19 |
+
cfg=yaml.safe_load(file_object)
|
20 |
+
|
21 |
+
except yaml.YAMLError as exc:
|
22 |
+
logger.error(str(exc))
|
23 |
+
raise
|
24 |
+
else:
|
25 |
+
return cfg
|
26 |
+
|
27 |
+
cfg= load_config()
|
28 |
+
load_dotenv("./src/.env")
|
29 |
+
|
30 |
+
EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME']
|
31 |
+
DATA_FILE_PATH=cfg['DATA_FILE_PATH']
|
32 |
+
READER_MODEL_NAME=cfg['READER_MODEL_NAME']
|
33 |
+
RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME']
|
34 |
+
VECTORDB_PATH=cfg['VECTORDB_PATH']
|
35 |
+
if __name__ == "__main__":
|
36 |
+
st.title("RAG App to query le College de Pédiatrie")
|
37 |
+
|
38 |
+
user_query = st.text_input("Entrez votre question:")
|
39 |
+
|
40 |
+
|
41 |
+
# Initialize the retriever and LLM
|
42 |
+
|
43 |
+
loader = PyPDFLoader(DATA_FILE_PATH)
|
44 |
+
#loader = PyPDFDirectoryLoader(DATA_FILE_PATH)
|
45 |
+
raw_document_base = loader.load()
|
46 |
+
MARKDOWN_SEPARATORS = [
|
47 |
+
"\n#{1,6} ",
|
48 |
+
"```\n",
|
49 |
+
"\n\\*\\*\\*+\n",
|
50 |
+
"\n---+\n",
|
51 |
+
"\n___+\n",
|
52 |
+
"\n\n",
|
53 |
+
"\n",
|
54 |
+
" ",
|
55 |
+
"",]
|
56 |
+
docs_processed = split_documents(
|
57 |
+
512, # We choose a chunk size adapted to our model
|
58 |
+
raw_document_base,
|
59 |
+
tokenizer_name=EMBEDDING_MODEL_NAME,
|
60 |
+
separator=MARKDOWN_SEPARATORS
|
61 |
+
)
|
62 |
+
embedding_model=init_embedding_model(EMBEDDING_MODEL_NAME)
|
63 |
+
|
64 |
+
if os.path.exists(VECTORDB_PATH):
|
65 |
+
new_vector_store = FAISS.load_local(
|
66 |
+
VECTORDB_PATH, embedding_model,
|
67 |
+
allow_dangerous_deserialization=True)
|
68 |
+
else:
|
69 |
+
KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model)
|
70 |
+
KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH)
|
71 |
+
|
72 |
+
|
73 |
+
if st.button("Get Answer"):
|
74 |
+
# Get the answer and relevant documents
|
75 |
+
bnb_config = BitsAndBytesConfig(
|
76 |
+
load_in_4bit=True,
|
77 |
+
bnb_4bit_use_double_quant=True,
|
78 |
+
bnb_4bit_quant_type="nf4",
|
79 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
80 |
+
)
|
81 |
+
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
83 |
+
|
84 |
+
READER_LLM = pipeline(
|
85 |
+
model=model,
|
86 |
+
tokenizer=tokenizer,
|
87 |
+
task="text-generation",
|
88 |
+
do_sample=True,
|
89 |
+
temperature=0.2,
|
90 |
+
repetition_penalty=1.1,
|
91 |
+
return_full_text=False,
|
92 |
+
max_new_tokens=500,
|
93 |
+
)
|
94 |
+
RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME)
|
95 |
+
num_doc_before_rerank=15
|
96 |
+
num_final_releveant_docs=5
|
97 |
+
answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True)
|
98 |
+
#print(answer)
|
99 |
+
|
100 |
+
|
101 |
+
# Display the answer
|
102 |
+
st.write("### Answer:")
|
103 |
+
st.write(answer)
|
104 |
+
|
105 |
+
# Display the relevant documents
|
106 |
+
st.write("### Relevant Documents:")
|
107 |
+
for i, doc in enumerate(relevant_docs):
|
108 |
+
st.write(f"Document {i}:\n{doc.text}")
|
config.yml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EMBEDDING_MODEL_NAME: "OrdalieTech/Solon-embeddings-large-0.1"
|
2 |
+
READER_MODEL_NAME: "mistralai/Mistral-7B-Instruct-v0.3"
|
3 |
+
RERANKER_MODEL_NAME: "colbert-ir/colbertv2.0"
|
4 |
+
VECTORDB_PATH: "./vectorDB/KNOWLEDGE_VECTOR_DATABASE_index"
|
5 |
+
DATA_FILE_PATH: "./data/College_pediatrie_2024.pdf"
|
data/college_pediatrie_2024.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaa5b6383d120dd1eda9048b230211deeabee2cdba3803caf7e4e40e21774c30
|
3 |
+
size 141324090
|
requirements.txt
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
accelerate==0.34.2
|
3 |
+
aiohappyeyeballs==2.4.3
|
4 |
+
aiohttp==3.10.10
|
5 |
+
aiosignal==1.3.1
|
6 |
+
alabaster==0.7.16
|
7 |
+
albucore==0.0.19
|
8 |
+
albumentations==1.4.20
|
9 |
+
altair==4.2.2
|
10 |
+
annotated-types==0.7.0
|
11 |
+
annoy==1.17.3
|
12 |
+
anyio==3.7.1
|
13 |
+
argon2-cffi==23.1.0
|
14 |
+
argon2-cffi-bindings==21.2.0
|
15 |
+
array_record==0.5.1
|
16 |
+
arviz==0.20.0
|
17 |
+
astropy==6.1.4
|
18 |
+
astropy-iers-data==0.2024.10.28.0.34.7
|
19 |
+
astunparse==1.6.3
|
20 |
+
async-timeout==4.0.3
|
21 |
+
atpublic==4.1.0
|
22 |
+
attrs==24.2.0
|
23 |
+
audioread==3.0.1
|
24 |
+
autograd==1.7.0
|
25 |
+
babel==2.16.0
|
26 |
+
backcall==0.2.0
|
27 |
+
beautifulsoup4==4.12.3
|
28 |
+
bigframes==1.25.0
|
29 |
+
bigquery-magics==0.4.0
|
30 |
+
bitarray==3.0.0
|
31 |
+
bitsandbytes==0.44.1
|
32 |
+
bleach==6.2.0
|
33 |
+
blinker==1.4
|
34 |
+
blis==0.7.11
|
35 |
+
blosc2==2.0.0
|
36 |
+
bokeh==3.4.3
|
37 |
+
Bottleneck==1.4.2
|
38 |
+
bqplot==0.12.43
|
39 |
+
branca==0.8.0
|
40 |
+
CacheControl==0.14.0
|
41 |
+
cachetools==5.5.0
|
42 |
+
catalogue==2.0.10
|
43 |
+
certifi==2024.8.30
|
44 |
+
cffi==1.17.1
|
45 |
+
chardet==5.2.0
|
46 |
+
charset-normalizer==3.4.0
|
47 |
+
chex==0.1.87
|
48 |
+
clarabel==0.9.0
|
49 |
+
click==8.1.7
|
50 |
+
cloudpathlib==0.20.0
|
51 |
+
cloudpickle==3.1.0
|
52 |
+
cmake==3.30.5
|
53 |
+
cmdstanpy==1.2.4
|
54 |
+
colbert-ai==0.2.19
|
55 |
+
colorcet==3.1.0
|
56 |
+
colorlover==0.3.0
|
57 |
+
colour==0.1.5
|
58 |
+
community==1.0.0b1
|
59 |
+
confection==0.1.5
|
60 |
+
cons==0.4.6
|
61 |
+
contourpy==1.3.0
|
62 |
+
cryptography==43.0.3
|
63 |
+
cuda-python==12.2.1
|
64 |
+
cudf-cu12 @ https://pypi.nvidia.com/cudf-cu12/cudf_cu12-24.10.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
|
65 |
+
cufflinks==0.17.3
|
66 |
+
cupy-cuda12x==12.2.0
|
67 |
+
cvxopt==1.3.2
|
68 |
+
cvxpy==1.5.3
|
69 |
+
cycler==0.12.1
|
70 |
+
cymem==2.0.8
|
71 |
+
Cython==3.0.11
|
72 |
+
dask==2024.10.0
|
73 |
+
dataclasses-json==0.6.7
|
74 |
+
datascience==0.17.6
|
75 |
+
datasets==3.1.0
|
76 |
+
db-dtypes==1.3.0
|
77 |
+
dbus-python==1.2.18
|
78 |
+
debugpy==1.6.6
|
79 |
+
decorator==4.4.2
|
80 |
+
defusedxml==0.7.1
|
81 |
+
Deprecated==1.2.14
|
82 |
+
diffusers==0.30.3
|
83 |
+
dill==0.3.8
|
84 |
+
dirtyjson==1.0.8
|
85 |
+
distro==1.9.0
|
86 |
+
dlib==19.24.2
|
87 |
+
dm-tree==0.1.8
|
88 |
+
docker-pycreds==0.4.0
|
89 |
+
docstring_parser==0.16
|
90 |
+
docutils==0.18.1
|
91 |
+
dopamine_rl==4.0.9
|
92 |
+
duckdb==1.1.2
|
93 |
+
earthengine-api==1.2.0
|
94 |
+
easydict==1.13
|
95 |
+
ecos==2.0.14
|
96 |
+
editdistance==0.8.1
|
97 |
+
eerepr==0.0.4
|
98 |
+
einops==0.8.0
|
99 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl#sha256=86cc141f63942d4b2c5fcee06630fd6f904788d2f0ab005cce45aadb8fb73889
|
100 |
+
entrypoints==0.4
|
101 |
+
et_xmlfile==2.0.0
|
102 |
+
etils==1.10.0
|
103 |
+
etuples==0.3.9
|
104 |
+
eval_type_backport==0.2.0
|
105 |
+
exceptiongroup==1.2.2
|
106 |
+
faiss-cpu==1.9.0
|
107 |
+
faiss-gpu==1.7.2
|
108 |
+
fast-pytorch-kmeans==0.2.0.1
|
109 |
+
fastai==2.7.18
|
110 |
+
fastcore==1.7.19
|
111 |
+
fastdownload==0.0.7
|
112 |
+
fastjsonschema==2.20.0
|
113 |
+
fastprogress==1.0.3
|
114 |
+
fastrlock==0.8.2
|
115 |
+
filelock==3.16.1
|
116 |
+
firebase-admin==6.5.0
|
117 |
+
Flask==2.2.5
|
118 |
+
flatbuffers==24.3.25
|
119 |
+
flax==0.8.5
|
120 |
+
folium==0.18.0
|
121 |
+
fonttools==4.54.1
|
122 |
+
frozendict==2.4.6
|
123 |
+
frozenlist==1.5.0
|
124 |
+
fsspec==2024.9.0
|
125 |
+
future==1.0.0
|
126 |
+
gast==0.6.0
|
127 |
+
gcsfs==2024.10.0
|
128 |
+
GDAL==3.6.4
|
129 |
+
gdown==5.2.0
|
130 |
+
geemap==0.35.0
|
131 |
+
gensim==4.3.3
|
132 |
+
geocoder==1.38.1
|
133 |
+
geographiclib==2.0
|
134 |
+
geopandas==1.0.1
|
135 |
+
geopy==2.4.1
|
136 |
+
gin-config==0.5.0
|
137 |
+
git-python==1.0.3
|
138 |
+
gitdb==4.0.11
|
139 |
+
GitPython==3.1.43
|
140 |
+
glob2==0.7
|
141 |
+
google==2.0.3
|
142 |
+
google-ai-generativelanguage==0.6.10
|
143 |
+
google-api-core==2.19.2
|
144 |
+
google-api-python-client==2.137.0
|
145 |
+
google-auth==2.27.0
|
146 |
+
google-auth-httplib2==0.2.0
|
147 |
+
google-auth-oauthlib==1.2.1
|
148 |
+
google-cloud-aiplatform==1.70.0
|
149 |
+
google-cloud-bigquery==3.25.0
|
150 |
+
google-cloud-bigquery-connection==1.15.5
|
151 |
+
google-cloud-bigquery-storage==2.27.0
|
152 |
+
google-cloud-bigtable==2.26.0
|
153 |
+
google-cloud-core==2.4.1
|
154 |
+
google-cloud-datastore==2.19.0
|
155 |
+
google-cloud-firestore==2.16.1
|
156 |
+
google-cloud-functions==1.16.5
|
157 |
+
google-cloud-iam==2.16.0
|
158 |
+
google-cloud-language==2.13.4
|
159 |
+
google-cloud-pubsub==2.25.0
|
160 |
+
google-cloud-resource-manager==1.13.0
|
161 |
+
google-cloud-storage==2.8.0
|
162 |
+
google-cloud-translate==3.15.5
|
163 |
+
google-colab @ file:///colabtools/dist/google_colab-1.0.0.tar.gz
|
164 |
+
google-crc32c==1.6.0
|
165 |
+
google-generativeai==0.8.3
|
166 |
+
google-pasta==0.2.0
|
167 |
+
google-resumable-media==2.7.2
|
168 |
+
googleapis-common-protos==1.65.0
|
169 |
+
googledrivedownloader==0.4
|
170 |
+
graphviz==0.20.3
|
171 |
+
greenlet==3.1.1
|
172 |
+
grpc-google-iam-v1==0.13.1
|
173 |
+
grpcio==1.64.1
|
174 |
+
grpcio-status==1.48.2
|
175 |
+
gspread==6.0.2
|
176 |
+
gspread-dataframe==3.3.1
|
177 |
+
gym==0.25.2
|
178 |
+
gym-notices==0.0.8
|
179 |
+
h11==0.14.0
|
180 |
+
h5netcdf==1.4.0
|
181 |
+
h5py==3.12.1
|
182 |
+
holidays==0.59
|
183 |
+
holoviews==1.19.1
|
184 |
+
html5lib==1.1
|
185 |
+
httpcore==1.0.6
|
186 |
+
httpimport==1.4.0
|
187 |
+
httplib2==0.22.0
|
188 |
+
httpx==0.27.2
|
189 |
+
httpx-sse==0.4.0
|
190 |
+
huggingface-hub==0.24.7
|
191 |
+
humanize==4.11.0
|
192 |
+
hyperopt==0.2.7
|
193 |
+
ibis-framework==9.2.0
|
194 |
+
idna==3.10
|
195 |
+
imageio==2.36.0
|
196 |
+
imageio-ffmpeg==0.5.1
|
197 |
+
imagesize==1.4.1
|
198 |
+
imbalanced-learn==0.12.4
|
199 |
+
imgaug==0.4.0
|
200 |
+
immutabledict==4.2.0
|
201 |
+
importlib_metadata==8.5.0
|
202 |
+
importlib_resources==6.4.5
|
203 |
+
imutils==0.5.4
|
204 |
+
inflect==7.4.0
|
205 |
+
iniconfig==2.0.0
|
206 |
+
intel-cmplr-lib-ur==2025.0.0
|
207 |
+
intel-openmp==2025.0.0
|
208 |
+
ipyevents==2.0.2
|
209 |
+
ipyfilechooser==0.6.0
|
210 |
+
ipykernel==5.5.6
|
211 |
+
ipyleaflet==0.19.2
|
212 |
+
ipyparallel==8.8.0
|
213 |
+
ipython==7.34.0
|
214 |
+
ipython-genutils==0.2.0
|
215 |
+
ipython-sql==0.5.0
|
216 |
+
ipytree==0.2.2
|
217 |
+
ipywidgets==7.7.1
|
218 |
+
itsdangerous==2.2.0
|
219 |
+
jax==0.4.33
|
220 |
+
jax-cuda12-pjrt==0.4.33
|
221 |
+
jax-cuda12-plugin==0.4.33
|
222 |
+
jaxlib==0.4.33
|
223 |
+
jeepney==0.7.1
|
224 |
+
jellyfish==1.1.0
|
225 |
+
jieba==0.42.1
|
226 |
+
Jinja2==3.1.4
|
227 |
+
jiter==0.6.1
|
228 |
+
joblib==1.4.2
|
229 |
+
jsonpatch==1.33
|
230 |
+
jsonpickle==3.3.0
|
231 |
+
jsonpointer==3.0.0
|
232 |
+
jsonschema==4.23.0
|
233 |
+
jsonschema-specifications==2024.10.1
|
234 |
+
jupyter-client==6.1.12
|
235 |
+
jupyter-console==6.1.0
|
236 |
+
jupyter-leaflet==0.19.2
|
237 |
+
jupyter-server==1.24.0
|
238 |
+
jupyter_core==5.7.2
|
239 |
+
jupyterlab_pygments==0.3.0
|
240 |
+
jupyterlab_widgets==3.0.13
|
241 |
+
kaggle==1.6.17
|
242 |
+
kagglehub==0.3.3
|
243 |
+
keras==3.4.1
|
244 |
+
keyring==23.5.0
|
245 |
+
kiwisolver==1.4.7
|
246 |
+
langchain==0.3.7
|
247 |
+
langchain-community==0.3.5
|
248 |
+
langchain-core==0.3.15
|
249 |
+
langchain-huggingface==0.1.2
|
250 |
+
langchain-openai==0.2.6
|
251 |
+
langchain-text-splitters==0.3.0
|
252 |
+
langcodes==3.4.1
|
253 |
+
langsmith==0.1.137
|
254 |
+
language_data==1.2.0
|
255 |
+
launchpadlib==1.10.16
|
256 |
+
lazr.restfulclient==0.14.4
|
257 |
+
lazr.uri==1.0.6
|
258 |
+
lazy_loader==0.4
|
259 |
+
libclang==18.1.1
|
260 |
+
libcudf-cu12 @ https://pypi.nvidia.com/libcudf-cu12/libcudf_cu12-24.10.1-py3-none-manylinux_2_28_x86_64.whl
|
261 |
+
librosa==0.10.2.post1
|
262 |
+
lightgbm==4.5.0
|
263 |
+
linkify-it-py==2.0.3
|
264 |
+
llama-cloud==0.1.4
|
265 |
+
llama-index==0.11.22
|
266 |
+
llama-index-agent-openai==0.3.4
|
267 |
+
llama-index-cli==0.3.1
|
268 |
+
llama-index-core==0.11.22
|
269 |
+
llama-index-embeddings-openai==0.2.5
|
270 |
+
llama-index-indices-managed-llama-cloud==0.4.0
|
271 |
+
llama-index-legacy==0.9.48.post3
|
272 |
+
llama-index-llms-openai==0.2.16
|
273 |
+
llama-index-multi-modal-llms-openai==0.2.3
|
274 |
+
llama-index-program-openai==0.2.0
|
275 |
+
llama-index-question-gen-openai==0.2.0
|
276 |
+
llama-index-readers-file==0.2.2
|
277 |
+
llama-index-readers-llama-parse==0.3.0
|
278 |
+
llama-parse==0.5.13
|
279 |
+
llvmlite==0.43.0
|
280 |
+
locket==1.0.0
|
281 |
+
logical-unification==0.4.6
|
282 |
+
lxml==5.3.0
|
283 |
+
marisa-trie==1.2.1
|
284 |
+
Markdown==3.7
|
285 |
+
markdown-it-py==3.0.0
|
286 |
+
MarkupSafe==3.0.2
|
287 |
+
marshmallow==3.23.1
|
288 |
+
matplotlib==3.8.0
|
289 |
+
matplotlib-inline==0.1.7
|
290 |
+
matplotlib-venn==1.1.1
|
291 |
+
mdit-py-plugins==0.4.2
|
292 |
+
mdurl==0.1.2
|
293 |
+
miniKanren==1.0.3
|
294 |
+
missingno==0.5.2
|
295 |
+
mistune==3.0.2
|
296 |
+
mizani==0.13.0
|
297 |
+
mkl==2024.2.2
|
298 |
+
ml-dtypes==0.4.1
|
299 |
+
mlxtend==0.23.1
|
300 |
+
more-itertools==10.5.0
|
301 |
+
moviepy==1.0.3
|
302 |
+
mpmath==1.3.0
|
303 |
+
msgpack==1.1.0
|
304 |
+
multidict==6.1.0
|
305 |
+
multipledispatch==1.0.0
|
306 |
+
multiprocess==0.70.16
|
307 |
+
multitasking==0.0.11
|
308 |
+
murmurhash==1.0.10
|
309 |
+
music21==9.1.0
|
310 |
+
mypy-extensions==1.0.0
|
311 |
+
namex==0.0.8
|
312 |
+
natsort==8.4.0
|
313 |
+
nbclassic==1.1.0
|
314 |
+
nbclient==0.10.0
|
315 |
+
nbconvert==7.16.4
|
316 |
+
nbformat==5.10.4
|
317 |
+
nest-asyncio==1.6.0
|
318 |
+
networkx==3.4.2
|
319 |
+
nibabel==5.3.2
|
320 |
+
ninja==1.11.1.1
|
321 |
+
nltk==3.9.1
|
322 |
+
notebook==6.5.5
|
323 |
+
notebook_shim==0.2.4
|
324 |
+
numba==0.60.0
|
325 |
+
numexpr==2.10.1
|
326 |
+
numpy==1.26.4
|
327 |
+
nvidia-cublas-cu12==12.6.3.3
|
328 |
+
nvidia-cuda-cupti-cu12==12.6.80
|
329 |
+
nvidia-cuda-nvcc-cu12==12.6.77
|
330 |
+
nvidia-cuda-runtime-cu12==12.6.77
|
331 |
+
nvidia-cudnn-cu12==9.5.1.17
|
332 |
+
nvidia-cufft-cu12==11.3.0.4
|
333 |
+
nvidia-curand-cu12==10.3.7.77
|
334 |
+
nvidia-cusolver-cu12==11.7.1.2
|
335 |
+
nvidia-cusparse-cu12==12.5.4.2
|
336 |
+
nvidia-nccl-cu12==2.23.4
|
337 |
+
nvidia-nvjitlink-cu12==12.6.77
|
338 |
+
nvtx==0.2.10
|
339 |
+
nx-cugraph-cu12 @ https://pypi.nvidia.com/nx-cugraph-cu12/nx_cugraph_cu12-24.10.0-py3-none-any.whl
|
340 |
+
oauth2client==4.1.3
|
341 |
+
oauthlib==3.2.2
|
342 |
+
onnx==1.17.0
|
343 |
+
openai==1.54.1
|
344 |
+
opencv-contrib-python==4.10.0.84
|
345 |
+
opencv-python==4.10.0.84
|
346 |
+
opencv-python-headless==4.10.0.84
|
347 |
+
openpyxl==3.1.5
|
348 |
+
opentelemetry-api==1.16.0
|
349 |
+
opentelemetry-sdk==1.16.0
|
350 |
+
opentelemetry-semantic-conventions==0.37b0
|
351 |
+
opt_einsum==3.4.0
|
352 |
+
optax==0.2.3
|
353 |
+
optree==0.13.0
|
354 |
+
orbax-checkpoint==0.6.4
|
355 |
+
orjson==3.10.10
|
356 |
+
osqp==0.6.7.post3
|
357 |
+
packaging==24.1
|
358 |
+
pacmap==0.7.3
|
359 |
+
pandas==2.2.2
|
360 |
+
pandas-datareader==0.10.0
|
361 |
+
pandas-gbq==0.24.0
|
362 |
+
pandas-stubs==2.2.2.240909
|
363 |
+
pandocfilters==1.5.1
|
364 |
+
panel==1.4.5
|
365 |
+
param==2.1.1
|
366 |
+
parso==0.8.4
|
367 |
+
parsy==2.1
|
368 |
+
partd==1.4.2
|
369 |
+
pathlib==1.0.1
|
370 |
+
patsy==0.5.6
|
371 |
+
peewee==3.17.7
|
372 |
+
peft==0.13.2
|
373 |
+
pexpect==4.9.0
|
374 |
+
pickleshare==0.7.5
|
375 |
+
pillow==10.4.0
|
376 |
+
platformdirs==4.3.6
|
377 |
+
plotly==5.24.1
|
378 |
+
plotnine==0.14.0
|
379 |
+
pluggy==1.5.0
|
380 |
+
polars==1.9.0
|
381 |
+
pooch==1.8.2
|
382 |
+
portpicker==1.5.2
|
383 |
+
preshed==3.0.9
|
384 |
+
prettytable==3.11.0
|
385 |
+
proglog==0.1.10
|
386 |
+
progressbar2==4.5.0
|
387 |
+
prometheus_client==0.21.0
|
388 |
+
promise==2.3
|
389 |
+
prompt_toolkit==3.0.48
|
390 |
+
propcache==0.2.0
|
391 |
+
prophet==1.1.6
|
392 |
+
proto-plus==1.25.0
|
393 |
+
protobuf==3.20.3
|
394 |
+
psutil==5.9.5
|
395 |
+
psycopg2==2.9.10
|
396 |
+
ptyprocess==0.7.0
|
397 |
+
py-cpuinfo==9.0.0
|
398 |
+
py4j==0.10.9.7
|
399 |
+
pyarrow==17.0.0
|
400 |
+
pyarrow-hotfix==0.6
|
401 |
+
pyasn1==0.6.1
|
402 |
+
pyasn1_modules==0.4.1
|
403 |
+
pycocotools==2.0.8
|
404 |
+
pycparser==2.22
|
405 |
+
pydantic==2.9.2
|
406 |
+
pydantic-settings==2.6.1
|
407 |
+
pydantic_core==2.23.4
|
408 |
+
pydata-google-auth==1.8.2
|
409 |
+
pydot==3.0.2
|
410 |
+
pydotplus==2.0.2
|
411 |
+
PyDrive==1.3.1
|
412 |
+
PyDrive2==1.20.0
|
413 |
+
pyerfa==2.0.1.4
|
414 |
+
pygame==2.6.1
|
415 |
+
pygit2==1.16.0
|
416 |
+
Pygments==2.18.0
|
417 |
+
PyGObject==3.42.1
|
418 |
+
PyJWT==2.9.0
|
419 |
+
pylibcudf-cu12 @ https://pypi.nvidia.com/pylibcudf-cu12/pylibcudf_cu12-24.10.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
|
420 |
+
pylibcugraph-cu12==24.10.0
|
421 |
+
pylibraft-cu12==24.10.0
|
422 |
+
pymc==5.17.0
|
423 |
+
pymystem3==0.2.0
|
424 |
+
pynvjitlink-cu12==0.4.0
|
425 |
+
pynvml==11.5.3
|
426 |
+
pyogrio==0.10.0
|
427 |
+
PyOpenGL==3.1.7
|
428 |
+
pyOpenSSL==24.2.1
|
429 |
+
pyparsing==3.2.0
|
430 |
+
pypdf==5.1.0
|
431 |
+
pyperclip==1.9.0
|
432 |
+
pyproj==3.7.0
|
433 |
+
pyshp==2.3.1
|
434 |
+
PySocks==1.7.1
|
435 |
+
pyspark==3.5.3
|
436 |
+
pytensor==2.25.5
|
437 |
+
pytest==7.4.4
|
438 |
+
python-apt==0.0.0
|
439 |
+
python-box==7.2.0
|
440 |
+
python-dateutil==2.8.2
|
441 |
+
python-dotenv==1.0.1
|
442 |
+
python-louvain==0.16
|
443 |
+
python-slugify==8.0.4
|
444 |
+
python-utils==3.9.0
|
445 |
+
pytz==2024.2
|
446 |
+
pyviz_comms==3.0.3
|
447 |
+
PyYAML==6.0.2
|
448 |
+
pyzmq==24.0.1
|
449 |
+
qdldl==0.1.7.post4
|
450 |
+
RAGatouille==0.0.8.post4
|
451 |
+
ratelim==0.1.6
|
452 |
+
referencing==0.35.1
|
453 |
+
regex==2024.9.11
|
454 |
+
requests==2.32.3
|
455 |
+
requests-oauthlib==1.3.1
|
456 |
+
requests-toolbelt==1.0.0
|
457 |
+
requirements-parser==0.9.0
|
458 |
+
rich==13.9.3
|
459 |
+
rmm-cu12==24.10.0
|
460 |
+
rpds-py==0.20.0
|
461 |
+
rpy2==3.4.2
|
462 |
+
rsa==4.9
|
463 |
+
safetensors==0.4.5
|
464 |
+
scikit-image==0.24.0
|
465 |
+
scikit-learn==1.5.2
|
466 |
+
scipy==1.13.1
|
467 |
+
scooby==0.10.0
|
468 |
+
scs==3.2.7
|
469 |
+
seaborn==0.13.2
|
470 |
+
SecretStorage==3.3.1
|
471 |
+
Send2Trash==1.8.3
|
472 |
+
sentence-transformers==2.7.0
|
473 |
+
sentencepiece==0.2.0
|
474 |
+
sentry-sdk==2.17.0
|
475 |
+
setproctitle==1.3.3
|
476 |
+
shap==0.46.0
|
477 |
+
shapely==2.0.6
|
478 |
+
shellingham==1.5.4
|
479 |
+
simple-parsing==0.1.6
|
480 |
+
six==1.16.0
|
481 |
+
sklearn-pandas==2.2.0
|
482 |
+
slicer==0.0.8
|
483 |
+
smart-open==7.0.5
|
484 |
+
smmap==5.0.1
|
485 |
+
sniffio==1.3.1
|
486 |
+
snowballstemmer==2.2.0
|
487 |
+
soundfile==0.12.1
|
488 |
+
soupsieve==2.6
|
489 |
+
soxr==0.5.0.post1
|
490 |
+
spacy==3.7.5
|
491 |
+
spacy-legacy==3.0.12
|
492 |
+
spacy-loggers==1.0.5
|
493 |
+
Sphinx==5.0.2
|
494 |
+
sphinxcontrib-applehelp==2.0.0
|
495 |
+
sphinxcontrib-devhelp==2.0.0
|
496 |
+
sphinxcontrib-htmlhelp==2.1.0
|
497 |
+
sphinxcontrib-jsmath==1.0.1
|
498 |
+
sphinxcontrib-qthelp==2.0.0
|
499 |
+
sphinxcontrib-serializinghtml==2.0.0
|
500 |
+
SQLAlchemy==2.0.35
|
501 |
+
sqlglot==25.1.0
|
502 |
+
sqlparse==0.5.1
|
503 |
+
srsly==2.4.8
|
504 |
+
stanio==0.5.1
|
505 |
+
statsmodels==0.14.4
|
506 |
+
StrEnum==0.4.15
|
507 |
+
stringzilla==3.10.6
|
508 |
+
striprtf==0.0.26
|
509 |
+
sympy==1.13.1
|
510 |
+
tables==3.8.0
|
511 |
+
tabulate==0.9.0
|
512 |
+
tbb==2021.13.1
|
513 |
+
tcmlib==1.2.0
|
514 |
+
tenacity==8.5.0
|
515 |
+
tensorboard==2.17.0
|
516 |
+
tensorboard-data-server==0.7.2
|
517 |
+
tensorflow==2.17.0
|
518 |
+
tensorflow-datasets==4.9.6
|
519 |
+
tensorflow-hub==0.16.1
|
520 |
+
tensorflow-io-gcs-filesystem==0.37.1
|
521 |
+
tensorflow-metadata==1.16.1
|
522 |
+
tensorflow-probability==0.24.0
|
523 |
+
tensorstore==0.1.67
|
524 |
+
termcolor==2.5.0
|
525 |
+
terminado==0.18.1
|
526 |
+
text-unidecode==1.3
|
527 |
+
textblob==0.17.1
|
528 |
+
tf-slim==1.1.0
|
529 |
+
tf_keras==2.17.0
|
530 |
+
thinc==8.2.5
|
531 |
+
threadpoolctl==3.5.0
|
532 |
+
tifffile==2024.9.20
|
533 |
+
tiktoken==0.8.0
|
534 |
+
timm==1.0.11
|
535 |
+
tinycss2==1.4.0
|
536 |
+
tokenizers==0.19.1
|
537 |
+
toml==0.10.2
|
538 |
+
tomli==2.0.2
|
539 |
+
toolz==0.12.1
|
540 |
+
torch @ https://download.pytorch.org/whl/cu121_full/torch-2.5.0%2Bcu121-cp310-cp310-linux_x86_64.whl
|
541 |
+
torchaudio @ https://download.pytorch.org/whl/cu121_full/torchaudio-2.5.0%2Bcu121-cp310-cp310-linux_x86_64.whl
|
542 |
+
torchsummary==1.5.1
|
543 |
+
torchvision @ https://download.pytorch.org/whl/cu121_full/torchvision-0.20.0%2Bcu121-cp310-cp310-linux_x86_64.whl
|
544 |
+
tornado==6.3.3
|
545 |
+
tqdm==4.66.6
|
546 |
+
traitlets==5.7.1
|
547 |
+
traittypes==0.2.1
|
548 |
+
transformers==4.44.2
|
549 |
+
tweepy==4.14.0
|
550 |
+
typeguard==4.4.0
|
551 |
+
typer==0.12.5
|
552 |
+
types-pytz==2024.2.0.20241003
|
553 |
+
types-setuptools==75.2.0.20241025
|
554 |
+
typing-inspect==0.9.0
|
555 |
+
typing_extensions==4.12.2
|
556 |
+
tzdata==2024.2
|
557 |
+
tzlocal==5.2
|
558 |
+
uc-micro-py==1.0.3
|
559 |
+
ujson==5.10.0
|
560 |
+
umf==0.9.0
|
561 |
+
uritemplate==4.1.1
|
562 |
+
urllib3==2.2.3
|
563 |
+
vega-datasets==0.9.0
|
564 |
+
voyager==2.0.9
|
565 |
+
wadllib==1.3.6
|
566 |
+
wandb==0.18.5
|
567 |
+
wasabi==1.1.3
|
568 |
+
wcwidth==0.2.13
|
569 |
+
weasel==0.4.1
|
570 |
+
webcolors==24.8.0
|
571 |
+
webencodings==0.5.1
|
572 |
+
websocket-client==1.8.0
|
573 |
+
Werkzeug==3.0.6
|
574 |
+
widgetsnbextension==3.6.10
|
575 |
+
wordcloud==1.9.3
|
576 |
+
wrapt==1.16.0
|
577 |
+
xarray==2024.10.0
|
578 |
+
xarray-einstats==0.8.0
|
579 |
+
xgboost==2.1.2
|
580 |
+
xlrd==2.0.1
|
581 |
+
xxhash==3.5.0
|
582 |
+
xyzservices==2024.9.0
|
583 |
+
yarl==1.17.0
|
584 |
+
yellowbrick==1.5
|
585 |
+
yfinance==0.2.48
|
586 |
+
zipp==3.20.2
|
src/__init__.py
ADDED
File without changes
|
src/app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Databricks notebook source
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
import yaml
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from src.generator import answer_with_rag
|
7 |
+
from ragatouille import RAGPretrainedModel
|
8 |
+
from src.data_preparation import split_documents
|
9 |
+
from transformers import pipeline
|
10 |
+
from langchain_community.document_loaders import PyPDFLoader
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
from src.retriever import init_vectorDB_from_doc, retriever
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
14 |
+
from langchain_community.vectorstores import FAISS
|
15 |
+
import faiss
|
16 |
+
def load_config():
|
17 |
+
with open("./src/config.yml","r") as file_object:
|
18 |
+
try:
|
19 |
+
cfg=yaml.safe_load(file_object)
|
20 |
+
|
21 |
+
except yaml.YAMLError as exc:
|
22 |
+
logger.error(str(exc))
|
23 |
+
raise
|
24 |
+
else:
|
25 |
+
return cfg
|
26 |
+
|
27 |
+
cfg= load_config()
|
28 |
+
load_dotenv("./src/.env")
|
29 |
+
|
30 |
+
EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME']
|
31 |
+
DATA_FILE_PATH=cfg['DATA_FILE_PATH']
|
32 |
+
READER_MODEL_NAME=cfg['READER_MODEL_NAME']
|
33 |
+
RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME']
|
34 |
+
VECTORDB_PATH=cfg['VECTORDB_PATH']
|
35 |
+
if __name__ == "__main__":
|
36 |
+
st.title("RAG App to query le College de Pédiatrie")
|
37 |
+
|
38 |
+
user_query = st.text_input("Entrez votre question:")
|
39 |
+
|
40 |
+
|
41 |
+
# Initialize the retriever and LLM
|
42 |
+
|
43 |
+
loader = PyPDFLoader(DATA_FILE_PATH)
|
44 |
+
#loader = PyPDFDirectoryLoader(DATA_FILE_PATH)
|
45 |
+
raw_document_base = loader.load()
|
46 |
+
MARKDOWN_SEPARATORS = [
|
47 |
+
"\n#{1,6} ",
|
48 |
+
"```\n",
|
49 |
+
"\n\\*\\*\\*+\n",
|
50 |
+
"\n---+\n",
|
51 |
+
"\n___+\n",
|
52 |
+
"\n\n",
|
53 |
+
"\n",
|
54 |
+
" ",
|
55 |
+
"",]
|
56 |
+
docs_processed = split_documents(
|
57 |
+
512, # We choose a chunk size adapted to our model
|
58 |
+
raw_document_base,
|
59 |
+
tokenizer_name=EMBEDDING_MODEL_NAME,
|
60 |
+
separator=MARKDOWN_SEPARATORS
|
61 |
+
)
|
62 |
+
embedding_model=init_embedding_model(EMBEDDING_MODEL_NAME)
|
63 |
+
|
64 |
+
if os.path.exists(VECTORDB_PATH):
|
65 |
+
new_vector_store = FAISS.load_local(
|
66 |
+
VECTORDB_PATH, embedding_model,
|
67 |
+
allow_dangerous_deserialization=True)
|
68 |
+
else:
|
69 |
+
KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model)
|
70 |
+
KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH)
|
71 |
+
|
72 |
+
|
73 |
+
if st.button("Get Answer"):
|
74 |
+
# Get the answer and relevant documents
|
75 |
+
bnb_config = BitsAndBytesConfig(
|
76 |
+
load_in_4bit=True,
|
77 |
+
bnb_4bit_use_double_quant=True,
|
78 |
+
bnb_4bit_quant_type="nf4",
|
79 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
80 |
+
)
|
81 |
+
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
83 |
+
|
84 |
+
READER_LLM = pipeline(
|
85 |
+
model=model,
|
86 |
+
tokenizer=tokenizer,
|
87 |
+
task="text-generation",
|
88 |
+
do_sample=True,
|
89 |
+
temperature=0.2,
|
90 |
+
repetition_penalty=1.1,
|
91 |
+
return_full_text=False,
|
92 |
+
max_new_tokens=500,
|
93 |
+
)
|
94 |
+
RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME)
|
95 |
+
num_doc_before_rerank=15
|
96 |
+
num_final_releveant_docs=5
|
97 |
+
answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True)
|
98 |
+
#print(answer)
|
99 |
+
|
100 |
+
|
101 |
+
# Display the answer
|
102 |
+
st.write("### Answer:")
|
103 |
+
st.write(answer)
|
104 |
+
|
105 |
+
# Display the relevant documents
|
106 |
+
st.write("### Relevant Documents:")
|
107 |
+
for i, doc in enumerate(relevant_docs):
|
108 |
+
st.write(f"Document {i}:\n{doc.text}")
|
src/config.yml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EMBEDDING_MODEL_NAME: "OrdalieTech/Solon-embeddings-large-0.1"
|
2 |
+
READER_MODEL_NAME: "mistralai/Mistral-7B-Instruct-v0.3"
|
3 |
+
RERANKER_MODEL_NAME: "colbert-ir/colbertv2.0"
|
4 |
+
VECTORDB_PATH: "./vectorDB/KNOWLEDGE_VECTOR_DATABASE_index"
|
5 |
+
DATA_FILE_PATH: "./data/College_pediatrie_2024.pdf"
|
src/data_preparation.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Databricks notebook source
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering,pipeline
|
9 |
+
from transformers import AutoTokenizer, pipeline
|
10 |
+
from langchain.docstore.document import Document as LangchainDocument
|
11 |
+
from typing import List, Optional
|
12 |
+
#from langchain import HuggingFacePipeline
|
13 |
+
#from langchain.chains import RetrievalQA
|
14 |
+
|
15 |
+
EMBEDDING_MODEL_NAME = "OrdalieTech/Solon-embeddings-large-0.1"
|
16 |
+
|
17 |
+
|
18 |
+
def split_documents(
|
19 |
+
chunk_size: int,
|
20 |
+
knowledge_base: List[LangchainDocument],
|
21 |
+
tokenizer_name: Optional[str] = EMBEDDING_MODEL_NAME,
|
22 |
+
separator:List[str]=None,
|
23 |
+
) -> List[LangchainDocument]:
|
24 |
+
"""
|
25 |
+
Split documents into chunks of maximum size `chunk_size` tokens and return a list of documents.
|
26 |
+
"""
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
28 |
+
AutoTokenizer.from_pretrained(tokenizer_name),
|
29 |
+
chunk_size=chunk_size,
|
30 |
+
chunk_overlap=int(chunk_size / 10),
|
31 |
+
add_start_index=True,
|
32 |
+
strip_whitespace=True,
|
33 |
+
separators=separator,
|
34 |
+
)
|
35 |
+
|
36 |
+
docs_processed = []
|
37 |
+
for doc in knowledge_base:
|
38 |
+
docs_processed += text_splitter.split_documents([doc])
|
39 |
+
|
40 |
+
# Remove duplicates
|
41 |
+
unique_texts = {}
|
42 |
+
docs_processed_unique = []
|
43 |
+
for doc in docs_processed:
|
44 |
+
if doc.page_content not in unique_texts:
|
45 |
+
unique_texts[doc.page_content] = True
|
46 |
+
docs_processed_unique.append(doc)
|
47 |
+
|
48 |
+
return docs_processed_unique
|
src/embeddings.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Databricks notebook source
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.vectorstores.utils import DistanceStrategy
|
4 |
+
|
5 |
+
|
6 |
+
def init_embedding_model(EMBEDDING_MODEL_NAME: str):
|
7 |
+
embedding_model = HuggingFaceEmbeddings(
|
8 |
+
model_name=EMBEDDING_MODEL_NAME,
|
9 |
+
multi_process=True,
|
10 |
+
model_kwargs={"device": "cuda"},
|
11 |
+
# model_kwargs={"device": "cpu"},
|
12 |
+
# Set `True` for cosine similarity
|
13 |
+
encode_kwargs={"normalize_embeddings": True},
|
14 |
+
)
|
15 |
+
return embedding_model
|
src/generator.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Databricks notebook source
|
2 |
+
from src.retriever import init_vectorDB_from_doc, retriever
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer, pipeline
|
5 |
+
from typing import List,Optional, Tuple # import the Tuple type
|
6 |
+
from langchain.docstore.document import Document as LangchainDocument
|
7 |
+
def promt_template(query: str,READER_MODEL_NAME:str,context:str):
|
8 |
+
prompt_in_chat_format = [
|
9 |
+
{
|
10 |
+
"role": "system",
|
11 |
+
"content": """Using the information contained in the context,
|
12 |
+
give a comprehensive answer to the question.
|
13 |
+
Respond only to the question asked, response should be concise and relevant to the question.
|
14 |
+
Provide the number of the source document when relevant.If the nswer cannot be deduced from the context, do not give an answer. Please answer in french""",
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"role": "user",
|
18 |
+
"content": """Context:
|
19 |
+
{context}
|
20 |
+
|
21 |
+
---
|
22 |
+
Now here is the question you need to answer.
|
23 |
+
|
24 |
+
Question: {query}""",
|
25 |
+
},
|
26 |
+
]
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
28 |
+
RAG_PROMPT_TEMPLATE = tokenizer.apply_chat_template(
|
29 |
+
prompt_in_chat_format, tokenize=False, add_generation_prompt=True)
|
30 |
+
return RAG_PROMPT_TEMPLATE
|
31 |
+
|
32 |
+
def answer_with_rag(
|
33 |
+
query: str,embedding_model, vectorDB: FAISS,READER_MODEL_NAME:str,
|
34 |
+
reranker,llm: pipeline, num_doc_before_rerank: int = 5,
|
35 |
+
num_final_relevant_docs: int = 5,
|
36 |
+
rerank: bool = True
|
37 |
+
|
38 |
+
) -> Tuple[str, List[LangchainDocument]]:
|
39 |
+
# Build the final prompt
|
40 |
+
relevant_docs= retriever(query,vectorDB,reranker,num_doc_before_rerank,num_final_relevant_docs,rerank)
|
41 |
+
context = "\nExtracted documents:\n"
|
42 |
+
context += "".join([f"Document {str(i)}:::\n" + doc for i, doc in enumerate(relevant_docs)])
|
43 |
+
#print("=> Context:")
|
44 |
+
#print(context)
|
45 |
+
RAG_PROMPT_TEMPLATE = promt_template(query,READER_MODEL_NAME,context)
|
46 |
+
final_prompt =RAG_PROMPT_TEMPLATE.format(query=query, context=context,READER_MODEL_NAME=READER_MODEL_NAME)
|
47 |
+
print("=> Final prompt:")
|
48 |
+
#print(final_prompt)
|
49 |
+
# Redact an answer
|
50 |
+
print("=> Generating answer...")
|
51 |
+
answer = llm(final_prompt)[0]["generated_text"]
|
52 |
+
|
53 |
+
return answer, relevant_docs
|
src/retriever.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Databricks notebook source
|
2 |
+
from typing import List,Optional
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.embeddings.base import Embeddings
|
5 |
+
from langchain_community.vectorstores.utils import DistanceStrategy
|
6 |
+
from transformers import RagRetriever
|
7 |
+
from langchain.docstore.document import Document as LangchainDocument
|
8 |
+
|
9 |
+
def init_vectorDB_from_doc(documents:List[LangchainDocument], embedding_model: Embeddings) -> FAISS:
|
10 |
+
KNOWLEDGE_VECTOR_DATABASE = FAISS.from_documents(
|
11 |
+
documents, embedding_model, distance_strategy=DistanceStrategy.COSINE
|
12 |
+
)
|
13 |
+
return KNOWLEDGE_VECTOR_DATABASE
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def retriever(
|
20 |
+
user_query: str,
|
21 |
+
vectorDB: FAISS,
|
22 |
+
reranker = None,
|
23 |
+
num_doc_before_rerank: int = 5,
|
24 |
+
num_final_relevant_docs: int = 5,
|
25 |
+
rerank: bool = True
|
26 |
+
) -> List[str]:
|
27 |
+
relevant_docs = vectorDB.similarity_search(query=user_query, k=num_doc_before_rerank)
|
28 |
+
relevant_docs = [doc.page_content for doc in relevant_docs] # Keep only the text
|
29 |
+
print("=> Relevant documents:")
|
30 |
+
print(relevant_docs)
|
31 |
+
if rerank and reranker:
|
32 |
+
# Reranking documents
|
33 |
+
relevant_docs = reranker.rerank(user_query, relevant_docs, k=num_final_relevant_docs)
|
34 |
+
final_relevant_docs = [doc["content"] for doc in relevant_docs]
|
35 |
+
print("=> Reranked documents:")
|
36 |
+
print(final_relevant_docs)
|
37 |
+
else:
|
38 |
+
final_relevant_docs = relevant_docs
|
39 |
+
print("=> Final relevant documents:")
|
40 |
+
print(final_relevant_docs)
|
41 |
+
return final_relevant_docs
|