Stéphanie Kamgnia Wonkap commited on
Commit
b99886d
1 Parent(s): eb67361

fixing main

Browse files
Files changed (2) hide show
  1. app.py +67 -62
  2. src/embeddings.py +1 -1
app.py CHANGED
@@ -10,7 +10,7 @@ from src.embeddings import init_embedding_model
10
 
11
  from transformers import pipeline
12
  from langchain_community.document_loaders import PyPDFLoader
13
- from langchain.embeddings import HuggingFaceEmbeddings
14
  from src.retriever import init_vectorDB_from_doc, retriever
15
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
16
  from langchain_community.vectorstores import FAISS
@@ -36,77 +36,82 @@ READER_MODEL_NAME=cfg['READER_MODEL_NAME']
36
  RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME']
37
  VECTORDB_PATH=cfg['VECTORDB_PATH']
38
 
39
- st.title("Une application RAG pour interroger le Collège de Pédiatrie 2024")
40
 
41
- user_query = st.text_input("Entrez votre question:")
 
 
42
 
43
 
44
  # Initialize the retriever and LLM
45
 
46
- loader = PyPDFLoader(DATA_FILE_PATH)
47
- #loader = PyPDFDirectoryLoader(DATA_FILE_PATH)
48
- raw_document_base = loader.load()
49
- MARKDOWN_SEPARATORS = [
50
- "\n#{1,6} ",
51
- "```\n",
52
- "\n\\*\\*\\*+\n",
53
- "\n---+\n",
54
- "\n___+\n",
55
- "\n\n",
56
- "\n",
57
- " ",
58
- "",]
59
- docs_processed = split_documents(
60
- 512, # We choose a chunk size adapted to our model
61
- raw_document_base,
62
- tokenizer_name=EMBEDDING_MODEL_NAME,
63
- separator=MARKDOWN_SEPARATORS
64
- )
65
- embedding_model=init_embedding_model(EMBEDDING_MODEL_NAME)
66
 
67
- if os.path.exists(VECTORDB_PATH):
68
- new_vector_store = FAISS.load_local(
69
- VECTORDB_PATH, embedding_model,
70
- allow_dangerous_deserialization=True)
71
- else:
72
- KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model)
73
- KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH)
74
 
75
 
76
- if st.button("Get Answer"):
77
  # Get the answer and relevant documents
78
- bnb_config = BitsAndBytesConfig(
79
- load_in_4bit=True,
80
- bnb_4bit_use_double_quant=True,
81
- bnb_4bit_quant_type="nf4",
82
- bnb_4bit_compute_dtype=torch.bfloat16,
83
- )
84
- model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
85
- tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
86
 
87
- READER_LLM = pipeline(
88
- model=model,
89
- tokenizer=tokenizer,
90
- task="text-generation",
91
- do_sample=True,
92
- temperature=0.2,
93
- repetition_penalty=1.1,
94
- return_full_text=False,
95
- max_new_tokens=500,
96
- token = os.getenv("HF_TOKEN")
97
- )
98
- RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME)
99
- num_doc_before_rerank=15
100
- num_final_releveant_docs=5
101
- answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True)
102
- #print(answer)
103
 
104
 
105
- # Display the answer
106
- st.write("### Answer:")
107
- st.write(answer)
108
 
109
- # Display the relevant documents
110
- st.write("### Relevant Documents:")
111
- for i, doc in enumerate(relevant_docs):
112
- st.write(f"Document {i}:\n{doc.text}")
 
 
 
 
 
10
 
11
  from transformers import pipeline
12
  from langchain_community.document_loaders import PyPDFLoader
13
+ from langchain_community.embeddings import HuggingFaceEmbeddings
14
  from src.retriever import init_vectorDB_from_doc, retriever
15
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
16
  from langchain_community.vectorstores import FAISS
 
36
  RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME']
37
  VECTORDB_PATH=cfg['VECTORDB_PATH']
38
 
 
39
 
40
+ def main():
41
+ st.title("Un RAG pour interroger le Collège de Pédiatrie 2024")
42
+ user_query = st.text_input("Entrez votre question:")
43
 
44
 
45
  # Initialize the retriever and LLM
46
 
47
+ loader = PyPDFLoader(DATA_FILE_PATH)
48
+ #loader = PyPDFDirectoryLoader(DATA_FILE_PATH)
49
+ raw_document_base = loader.load()
50
+ MARKDOWN_SEPARATORS = [
51
+ "\n#{1,6} ",
52
+ "```\n",
53
+ "\n\\*\\*\\*+\n",
54
+ "\n---+\n",
55
+ "\n___+\n",
56
+ "\n\n",
57
+ "\n",
58
+ " ",
59
+ "",]
60
+ docs_processed = split_documents(
61
+ 512, # We choose a chunk size adapted to our model
62
+ raw_document_base,
63
+ tokenizer_name=EMBEDDING_MODEL_NAME,
64
+ separator=MARKDOWN_SEPARATORS
65
+ )
66
+ embedding_model=init_embedding_model(EMBEDDING_MODEL_NAME)
67
 
68
+ if os.path.exists(VECTORDB_PATH):
69
+ new_vector_store = FAISS.load_local(
70
+ VECTORDB_PATH, embedding_model,
71
+ allow_dangerous_deserialization=True)
72
+ else:
73
+ KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model)
74
+ KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH)
75
 
76
 
77
+ if st.button("Get Answer"):
78
  # Get the answer and relevant documents
79
+ bnb_config = BitsAndBytesConfig(
80
+ load_in_4bit=True,
81
+ bnb_4bit_use_double_quant=True,
82
+ bnb_4bit_quant_type="nf4",
83
+ bnb_4bit_compute_dtype=torch.bfloat16,
84
+ )
85
+ model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
86
+ tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
87
 
88
+ READER_LLM = pipeline(
89
+ model=model,
90
+ tokenizer=tokenizer,
91
+ task="text-generation",
92
+ do_sample=True,
93
+ temperature=0.2,
94
+ repetition_penalty=1.1,
95
+ return_full_text=False,
96
+ max_new_tokens=500,
97
+ token = os.getenv("HF_TOKEN")
98
+ )
99
+ RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME)
100
+ num_doc_before_rerank=15
101
+ num_final_releveant_docs=5
102
+ answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True)
103
+ #print(answer)
104
 
105
 
106
+ # Display the answer
107
+ st.write("### Answer:")
108
+ st.write(answer)
109
 
110
+ # Display the relevant documents
111
+ st.write("### Relevant Documents:")
112
+ for i, doc in enumerate(relevant_docs):
113
+ st.write(f"Document {i}:\n{doc.text}")
114
+
115
+
116
+ if __name__ == "__main__":
117
+ main()
src/embeddings.py CHANGED
@@ -1,5 +1,5 @@
1
  # Databricks notebook source
2
- from langchain_huggingface import HuggingFaceEmbeddings
3
  from langchain_community.vectorstores.utils import DistanceStrategy
4
 
5
 
 
1
  # Databricks notebook source
2
+ from langchain_community.embeddings import HuggingFaceEmbeddings
3
  from langchain_community.vectorstores.utils import DistanceStrategy
4
 
5