# Databricks notebook source import streamlit as st import os import yaml from langchain_nvidia_ai_endpoints import ChatNVIDIA from dotenv import load_dotenv import torch from src.generator import answer_with_rag from ragatouille import RAGPretrainedModel from src.data_preparation import split_documents from src.embeddings import init_embedding_model from langchain_nvidia_ai_endpoints.embeddings import NVIDIAEmbeddings from transformers import pipeline from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from src.retriever import init_vectorDB_from_doc, retriever from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from langchain_community.vectorstores import FAISS import faiss def load_config(): with open("./config.yml","r") as file_object: try: cfg=yaml.safe_load(file_object) except yaml.YAMLError as exc: logger.error(str(exc)) raise else: return cfg cfg= load_config() #os.environ['NVIDIA_API_KEY']=st.secrets("NVIDIA_API_KEY") #load_dotenv("./src/.env") #HF_TOKEN=os.environ.get["HF_TOKEN"] #st.write(os.environ["HF_TOKEN"] == st.secrets["HF_TOKEN"]) EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME'] DATA_FILE_PATH=cfg['DATA_FILE_PATH'] READER_MODEL_NAME=cfg['READER_MODEL_NAME'] RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME'] VECTORDB_PATH=cfg['VECTORDB_PATH'] def main(): st.title("Un RAG pour interroger le Collège de Pédiatrie 2024") user_query = st.text_input("Entrez votre question:") if KNOWLEDGE_VECTOR_DATABASE not in st.session_state: # Initialize the retriever and LLM st.session_state.loader = PyPDFLoader(DATA_FILE_PATH) #loader = PyPDFDirectoryLoader(DATA_FILE_PATH) st.session_state.raw_document_base = st.session_state.loader.load() st.session_state.MARKDOWN_SEPARATORS = [ "\n#{1,6} ", "```\n", "\n\\*\\*\\*+\n", "\n---+\n", "\n___+\n", "\n\n", "\n", " ", "",] st.session_state.docs_processed = split_documents( 512, # We choose a chunk size adapted to our model st.session_state.raw_document_base, #tokenizer_name=EMBEDDING_MODEL_NAME, separator=st.session_state.MARKDOWN_SEPARATORS ) st.session_state.embedding_model=NVIDIAEmbeddings() st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed, st.session_state.embedding_model) #if os.path.exists(VECTORDB_PATH): # KNOWLEDGE_VECTOR_DATABASE = FAISS.load_local( # VECTORDB_PATH, embedding_model, # allow_dangerous_deserialization=True) #else: #KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model) # KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH) if st.button("Get Answer"): # Get the answer and relevant documents #bnb_config = BitsAndBytesConfig( #load_in_8bit=True # load_in_4bit=True, # bnb_4bit_use_double_quant=True, # bnb_4bit_quant_type="nf4", # bnb_4bit_compute_dtype=torch.bfloat16, #) llm = ChatNVIDIA( model=READER_MODEL_NAME, api_key= os.get("NVIDIA_API_KEY"), temperature=0.2, top_p=0.7, max_tokens=1024, ) #tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME) #READER_LLM = pipeline( # model=model, # tokenizer=tokenizer, # task="text-generation", # do_sample=True, # temperature=0.2, # repetition_penalty=1.1, # return_full_text=False, # max_new_tokens=500, # token = os.getenv("HF_TOKEN") # ) # RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME) # num_doc_before_rerank=15 # num_final_releveant_docs=5 # answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True) #print(answer) # Display the answer st.write("### Answer:") st.write(answer) # Display the relevant documents st.write("### Relevant Documents:") for i, doc in enumerate(relevant_docs): st.write(f"Document {i}:\n{doc}") if __name__ == "__main__": main()