File size: 5,153 Bytes
8ec41f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import re
import pickle
import base64
import requests
import argparse
import numpy as np
import gradio as gr

from functools import partial
from PIL import Image

SERVER_URL = os.getenv('SERVER_URL')


def get_images(state):
    history = ''
    for i in range(len(state)):
        for j in range(len(state[i])):
            history += state[i][j] + '\n'
    for image_path in re.findall('image/[0-9,a-z]+\.png', history):
        if os.path.exists(image_path):
            continue
        data = {'method': 'get_image', 'args': [image_path], 'kwargs': {}}
        data = base64.b64encode(pickle.dumps(data)).decode('utf-8')
        response = requests.post(SERVER_URL, json=data)
        image = pickle.loads(base64.b64decode(response.json().encode('utf-8')))
        image.save(image_path)


def bot_request(method, *args, **kwargs):
    data = {'method': method, 'args': args, 'kwargs': kwargs}
    data = base64.b64encode(pickle.dumps(data)).decode('utf-8')
    response = requests.post(SERVER_URL, json=data)
    response = pickle.loads(base64.b64decode(response.json().encode('utf-8')))
    if response is not None:
        state = response[0]
        get_images(state)
    return response


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--temperature', type=float, default=0.0, help='temperature for the llm model')
    parser.add_argument('--max_new_tokens', type=int, default=128, help='max number of new tokens to generate')
    parser.add_argument('--top_p', type=float, default=1.0, help='top_p for the llm model')
    parser.add_argument('--top_k', type=int, default=40, help='top_k for the llm model')
    parser.add_argument('--num_beams', type=int, default=4, help='num_beams for the llm model')
    parser.add_argument('--keep_last_n_paragraphs', type=int, default=1, help='keep last n paragraphs in the memory')
    args = parser.parse_args()

    examples = [
        ['images/example-1.jpg', 'What is unusual about this image?'],
        ['images/example-2.jpg', 'Make the image look like a cartoon.'],
        ['images/example-3.jpg', 'Segment the tie in the image.'],
        ['images/example-4.jpg', 'Generate a man watching a sea based on the pose of the woman.'],
        ['images/example-5.jpg', 'Replace the dog with a cat.'],
    ]

    if not os.path.exists('image'):
        os.makedirs('image')

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column(scale=0.3):
                with gr.Row():
                    image = gr.Image(type="pil", label="input image")
                with gr.Row():
                    txt = gr.Textbox(lines=7, show_label=False, elem_id="textbox",
                                     placeholder="Enter text and press submit, or upload an image").style(container=False)
                with gr.Row():
                    submit = gr.Button("Submit")
                with gr.Row():
                    clear = gr.Button("Clear")
                with gr.Row():
                    keep_last_n_paragraphs = gr.Slider(
                        minimum=0,
                        maximum=3,
                        value=args.keep_last_n_paragraphs,
                        step=1,
                        interactive=True,
                        label="Remember Last N Paragraphs")
                    max_new_token = gr.Slider(
                        minimum=128,
                        maximum=1024,
                        value=args.max_new_tokens,
                        step=64,
                        interactive=True,
                        label="Max New Tokens")
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=args.temperature,
                        step=0.1,
                        interactive=True,
                        label="Temperature")
                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=args.top_p,
                        step=0.1,
                        interactive=True,
                        label="Top P")
            with gr.Column(scale=0.7):
                chatbot = gr.Chatbot(elem_id="chatbot", label="🦙 GPT4Tools").style(height=690)
                state = gr.State([])

            txt.submit(partial(bot_request, 'run_text'), [txt, state], [chatbot, state])
            txt.submit(lambda: "", None, txt)
            image.upload(lambda: "", None, txt)
            submit.click(partial(bot_request, 'run_image'), [image, state, txt], [chatbot, state, txt]).then(
                partial(bot_request, 'run_text'), [txt, state, temperature, top_p, max_new_token, keep_last_n_paragraphs], [chatbot, state, txt]).then(
                    lambda: None, None, image)
            clear.click(partial(bot_request, 'clear'))
            clear.click(lambda: [], None, chatbot)
            clear.click(lambda: [], None, state)
        with gr.Row():
            gr.Examples(
                examples=examples,
                inputs=[image, txt],
            )
        demo.launch()