Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) OpenMMLab. All rights reserved. | |
"""Perform MMYOLO inference on large images (as satellite imagery) as: | |
```shell | |
wget -P checkpoint https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth # noqa: E501, E261. | |
python demo/large_image_demo.py \ | |
demo/large_image.jpg \ | |
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \ | |
checkpoint/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth | |
``` | |
""" | |
import os | |
import random | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import mmcv | |
import numpy as np | |
from mmdet.apis import inference_detector, init_detector | |
from mmengine.config import Config, ConfigDict | |
from mmengine.logging import print_log | |
from mmengine.utils import ProgressBar | |
try: | |
from sahi.slicing import slice_image | |
except ImportError: | |
raise ImportError('Please run "pip install -U sahi" ' | |
'to install sahi first for large image inference.') | |
from mmyolo.registry import VISUALIZERS | |
from mmyolo.utils import switch_to_deploy | |
from mmyolo.utils.large_image import merge_results_by_nms, shift_predictions | |
from mmyolo.utils.misc import get_file_list | |
def parse_args(): | |
parser = ArgumentParser( | |
description='Perform MMYOLO inference on large images.') | |
parser.add_argument( | |
'img', help='Image path, include image file, dir and URL.') | |
parser.add_argument('config', help='Config file') | |
parser.add_argument('checkpoint', help='Checkpoint file') | |
parser.add_argument( | |
'--out-dir', default='./output', help='Path to output file') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--show', action='store_true', help='Show the detection results') | |
parser.add_argument( | |
'--deploy', | |
action='store_true', | |
help='Switch model to deployment mode') | |
parser.add_argument( | |
'--tta', | |
action='store_true', | |
help='Whether to use test time augmentation') | |
parser.add_argument( | |
'--score-thr', type=float, default=0.3, help='Bbox score threshold') | |
parser.add_argument( | |
'--patch-size', type=int, default=640, help='The size of patches') | |
parser.add_argument( | |
'--patch-overlap-ratio', | |
type=float, | |
default=0.25, | |
help='Ratio of overlap between two patches') | |
parser.add_argument( | |
'--merge-iou-thr', | |
type=float, | |
default=0.25, | |
help='IoU threshould for merging results') | |
parser.add_argument( | |
'--merge-nms-type', | |
type=str, | |
default='nms', | |
help='NMS type for merging results') | |
parser.add_argument( | |
'--batch-size', | |
type=int, | |
default=1, | |
help='Batch size, must greater than or equal to 1') | |
parser.add_argument( | |
'--debug', | |
action='store_true', | |
help='Export debug results before merging') | |
parser.add_argument( | |
'--save-patch', | |
action='store_true', | |
help='Save the results of each patch. ' | |
'The `--debug` must be enabled.') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
config = args.config | |
if isinstance(config, (str, Path)): | |
config = Config.fromfile(config) | |
elif not isinstance(config, Config): | |
raise TypeError('config must be a filename or Config object, ' | |
f'but got {type(config)}') | |
if 'init_cfg' in config.model.backbone: | |
config.model.backbone.init_cfg = None | |
if args.tta: | |
assert 'tta_model' in config, 'Cannot find ``tta_model`` in config.' \ | |
" Can't use tta !" | |
assert 'tta_pipeline' in config, 'Cannot find ``tta_pipeline`` ' \ | |
"in config. Can't use tta !" | |
config.model = ConfigDict(**config.tta_model, module=config.model) | |
test_data_cfg = config.test_dataloader.dataset | |
while 'dataset' in test_data_cfg: | |
test_data_cfg = test_data_cfg['dataset'] | |
# batch_shapes_cfg will force control the size of the output image, | |
# it is not compatible with tta. | |
if 'batch_shapes_cfg' in test_data_cfg: | |
test_data_cfg.batch_shapes_cfg = None | |
test_data_cfg.pipeline = config.tta_pipeline | |
# TODO: TTA mode will error if cfg_options is not set. | |
# This is an mmdet issue and needs to be fixed later. | |
# build the model from a config file and a checkpoint file | |
model = init_detector( | |
config, args.checkpoint, device=args.device, cfg_options={}) | |
if args.deploy: | |
switch_to_deploy(model) | |
if not os.path.exists(args.out_dir) and not args.show: | |
os.mkdir(args.out_dir) | |
# init visualizer | |
visualizer = VISUALIZERS.build(model.cfg.visualizer) | |
visualizer.dataset_meta = model.dataset_meta | |
# get file list | |
files, source_type = get_file_list(args.img) | |
# start detector inference | |
print(f'Performing inference on {len(files)} images.... ' | |
'This may take a while.') | |
progress_bar = ProgressBar(len(files)) | |
for file in files: | |
# read image | |
img = mmcv.imread(file) | |
# arrange slices | |
height, width = img.shape[:2] | |
sliced_image_object = slice_image( | |
img, | |
slice_height=args.patch_size, | |
slice_width=args.patch_size, | |
auto_slice_resolution=False, | |
overlap_height_ratio=args.patch_overlap_ratio, | |
overlap_width_ratio=args.patch_overlap_ratio, | |
) | |
# perform sliced inference | |
slice_results = [] | |
start = 0 | |
while True: | |
# prepare batch slices | |
end = min(start + args.batch_size, len(sliced_image_object)) | |
images = [] | |
for sliced_image in sliced_image_object.images[start:end]: | |
images.append(sliced_image) | |
# forward the model | |
slice_results.extend(inference_detector(model, images)) | |
if end >= len(sliced_image_object): | |
break | |
start += args.batch_size | |
if source_type['is_dir']: | |
filename = os.path.relpath(file, args.img).replace('/', '_') | |
else: | |
filename = os.path.basename(file) | |
img = mmcv.imconvert(img, 'bgr', 'rgb') | |
out_file = None if args.show else os.path.join(args.out_dir, filename) | |
# export debug images | |
if args.debug: | |
# export sliced image results | |
name, suffix = os.path.splitext(filename) | |
shifted_instances = shift_predictions( | |
slice_results, | |
sliced_image_object.starting_pixels, | |
src_image_shape=(height, width)) | |
merged_result = slice_results[0].clone() | |
merged_result.pred_instances = shifted_instances | |
debug_file_name = name + '_debug' + suffix | |
debug_out_file = None if args.show else os.path.join( | |
args.out_dir, debug_file_name) | |
visualizer.set_image(img.copy()) | |
debug_grids = [] | |
for starting_point in sliced_image_object.starting_pixels: | |
start_point_x = starting_point[0] | |
start_point_y = starting_point[1] | |
end_point_x = start_point_x + args.patch_size | |
end_point_y = start_point_y + args.patch_size | |
debug_grids.append( | |
[start_point_x, start_point_y, end_point_x, end_point_y]) | |
debug_grids = np.array(debug_grids) | |
debug_grids[:, 0::2] = np.clip(debug_grids[:, 0::2], 1, | |
img.shape[1] - 1) | |
debug_grids[:, 1::2] = np.clip(debug_grids[:, 1::2], 1, | |
img.shape[0] - 1) | |
palette = np.random.randint(0, 256, size=(len(debug_grids), 3)) | |
palette = [tuple(c) for c in palette] | |
line_styles = random.choices(['-', '-.', ':'], k=len(debug_grids)) | |
visualizer.draw_bboxes( | |
debug_grids, | |
edge_colors=palette, | |
alpha=1, | |
line_styles=line_styles) | |
visualizer.draw_bboxes( | |
debug_grids, face_colors=palette, alpha=0.15) | |
visualizer.draw_texts( | |
list(range(len(debug_grids))), | |
debug_grids[:, :2] + 5, | |
colors='w') | |
visualizer.add_datasample( | |
debug_file_name, | |
visualizer.get_image(), | |
data_sample=merged_result, | |
draw_gt=False, | |
show=args.show, | |
wait_time=0, | |
out_file=debug_out_file, | |
pred_score_thr=args.score_thr, | |
) | |
if args.save_patch: | |
debug_patch_out_dir = os.path.join(args.out_dir, | |
f'{name}_patch') | |
for i, slice_result in enumerate(slice_results): | |
patch_out_file = os.path.join( | |
debug_patch_out_dir, | |
f'{filename}_slice_{i}_result.jpg') | |
image = mmcv.imconvert(sliced_image_object.images[i], | |
'bgr', 'rgb') | |
visualizer.add_datasample( | |
'patch_result', | |
image, | |
data_sample=slice_result, | |
draw_gt=False, | |
show=False, | |
wait_time=0, | |
out_file=patch_out_file, | |
pred_score_thr=args.score_thr, | |
) | |
image_result = merge_results_by_nms( | |
slice_results, | |
sliced_image_object.starting_pixels, | |
src_image_shape=(height, width), | |
nms_cfg={ | |
'type': args.merge_nms_type, | |
'iou_threshold': args.merge_iou_thr | |
}) | |
visualizer.add_datasample( | |
filename, | |
img, | |
data_sample=image_result, | |
draw_gt=False, | |
show=args.show, | |
wait_time=0, | |
out_file=out_file, | |
pred_score_thr=args.score_thr, | |
) | |
progress_bar.update() | |
if not args.show or (args.debug and args.save_patch): | |
print_log( | |
f'\nResults have been saved at {os.path.abspath(args.out_dir)}') | |
if __name__ == '__main__': | |
main() | |