|
import gradio as gr |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
pipeline = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128").to("cuda") |
|
|
|
def diffusion(): |
|
images = [] |
|
for i in range(3): |
|
image = pipeline(num_inference_steps=25).images[0] |
|
images.append(image) |
|
return images |
|
|
|
demo = gr.Interface( |
|
fn=diffusion, |
|
inputs=None, |
|
outputs=gr.Gallery(label="generated image", columns=3), |
|
title="Unconditional image generation", |
|
description="An unconditional diffusion model trained on a dataset of butterfly images." |
|
) |
|
|
|
demo.launch(debug=True) |