from typing import Any, List, Callable import cv2 import numpy as np import onnxruntime import roop.globals from roop.typing import Face, Frame, FaceSet from roop.utilities import resolve_relative_path # THREAD_LOCK = threading.Lock() class Enhance_RestoreFormer(): model_restoreformer = None devicename = None name = None processorname = 'restoreformer' type = 'enhance' def Initialize(self, devicename:str): if self.model_restoreformer is None: # replace Mac mps with cpu for the moment devicename = devicename.replace('mps', 'cpu') self.devicename = devicename model_path = resolve_relative_path('../models/restoreformer.onnx') self.model_restoreformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) self.model_inputs = self.model_restoreformer.get_inputs() model_outputs = self.model_restoreformer.get_outputs() self.io_binding = self.model_restoreformer.io_binding() self.io_binding.bind_output(model_outputs[0].name, self.devicename) def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: # preprocess input_size = temp_frame.shape[1] temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) temp_frame = temp_frame.astype('float32') / 255.0 temp_frame = (temp_frame - 0.5) / 0.5 temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) # .astype(np.float32) self.model_restoreformer.run_with_iobinding(self.io_binding) ort_outs = self.io_binding.copy_outputs_to_cpu() result = ort_outs[0][0] del ort_outs result = np.clip(result, -1, 1) result = (result + 1) / 2 result = result.transpose(1, 2, 0) * 255.0 result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) scale_factor = int(result.shape[1] / input_size) return result.astype(np.uint8), scale_factor def Release(self): del self.model_restoreformer self.model_restoreformer = None del self.io_binding self.io_binding = None