stogaja commited on
Commit
d96f2eb
·
1 Parent(s): 1d8b740

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -13
app.py CHANGED
@@ -1,5 +1,5 @@
1
- import streamlit as st
2
  from importlib.machinery import PathFinder
 
3
  import io
4
  import netrc
5
  import pickle
@@ -32,7 +32,7 @@ st.markdown(
32
  )
33
 
34
  # # let's load the saved model
35
- # loaded_model = pickle.load(open('https://drive.google.com/file/d/1CUGbhyT8M4wU_y6FDYS5LBngcgORjGej/view?usp=sharing', 'rb'))
36
 
37
 
38
  # Containers
@@ -48,35 +48,32 @@ with header_container:
48
 
49
  # model container
50
  with mod_container:
51
-
52
  # collecting input from user
53
  prompt = st.text_input("Enter your description below ...")
54
 
55
  # Loading e data
56
- data = (pd.read_csv("SBERT_data.csv")
57
- ).drop(['Unnamed: 0'], axis=1)
58
 
59
- data['prompt'] = prompt
60
- data.rename(columns={'target_text': 'sentence2',
61
- 'prompt': 'sentence1'}, inplace=True)
62
  data['sentence2'] = data['sentence2'].astype('str')
63
- data['sentence1'] = data['sentence1'].astype('str')
64
 
65
  # let's pass the input to the loaded_model with torch compiled with cuda
66
  if prompt:
67
  # let's get the result
68
-
 
69
  from sentence_transformers import CrossEncoder
70
  loaded_model = CrossEncoder("cross-encoder/stsb-roberta-base")
71
  sentence_pairs = []
72
- for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
73
  sentence_pairs.append([sentence1, sentence2])
74
 
75
- simscore = loaded_model.predict([prompt])
76
  # sorting the df to get highest scoring xpath_container
77
  data['SBERT CrossEncoder_Score'] = loaded_model.predict(sentence_pairs)
78
  most_acc = data.head(5)
79
  # predictions
80
  st.write("Highest Similarity score: ", simscore)
81
  st.text("Is this one of these the Xpath you're looking for?")
82
- st.write(st.write(most_acc["input_text"]))
 
 
1
  from importlib.machinery import PathFinder
2
+
3
  import io
4
  import netrc
5
  import pickle
 
32
  )
33
 
34
  # # let's load the saved model
35
+ loaded_model = pickle.load(open('XpathFinder1.sav', 'rb'))
36
 
37
 
38
  # Containers
 
48
 
49
  # model container
50
  with mod_container:
 
51
  # collecting input from user
52
  prompt = st.text_input("Enter your description below ...")
53
 
54
  # Loading e data
55
+ data = (pd.read_csv("SBERT_data.csv")).drop(['Unnamed: 0'], axis = 1)
 
56
 
57
+ data['prompt']= prompt
58
+ data.rename(columns = {'target_text':'sentence2', 'prompt':'sentence1'}, inplace = True)
 
59
  data['sentence2'] = data['sentence2'].astype('str')
60
+ data['sentence1'] = data['sentence1'].astype('str')
61
 
62
  # let's pass the input to the loaded_model with torch compiled with cuda
63
  if prompt:
64
  # let's get the result
65
+ simscore = loaded_model.predict([prompt])
66
+
67
  from sentence_transformers import CrossEncoder
68
  loaded_model = CrossEncoder("cross-encoder/stsb-roberta-base")
69
  sentence_pairs = []
70
+ for sentence1, sentence2 in zip(data['sentence1'],data['sentence2']):
71
  sentence_pairs.append([sentence1, sentence2])
72
 
 
73
  # sorting the df to get highest scoring xpath_container
74
  data['SBERT CrossEncoder_Score'] = loaded_model.predict(sentence_pairs)
75
  most_acc = data.head(5)
76
  # predictions
77
  st.write("Highest Similarity score: ", simscore)
78
  st.text("Is this one of these the Xpath you're looking for?")
79
+ st.write(st.write(most_acc["input_text"]))