File size: 4,775 Bytes
f0c7f08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import sys
sys.path.append(os.getcwd())
from nets.base import TrainWrapperBaseClass
from nets.spg.s2glayers import Discriminator as D_S2G
from nets.spg.vqvae_1d import AE as s2g_body
import torch
import torch.optim as optim
import torch.nn.functional as F
from data_utils.lower_body import c_index, c_index_3d, c_index_6d
def separate_aa(aa):
aa = aa[:, :, :].reshape(aa.shape[0], aa.shape[1], -1, 5)
axis = F.normalize(aa[:, :, :, :3], dim=-1)
angle = F.normalize(aa[:, :, :, 3:5], dim=-1)
return axis, angle
class TrainWrapper(TrainWrapperBaseClass):
'''
a wrapper receving a batch from data_utils and calculate loss
'''
def __init__(self, args, config):
self.args = args
self.config = config
self.device = torch.device(self.args.gpu)
self.global_step = 0
self.gan = False
self.convert_to_6d = self.config.Data.pose.convert_to_6d
self.preleng = self.config.Data.pose.pre_pose_length
self.expression = self.config.Data.pose.expression
self.epoch = 0
self.init_params()
self.num_classes = 4
self.g = s2g_body(self.each_dim[1] + self.each_dim[2], embedding_dim=64, num_embeddings=0,
num_hiddens=1024, num_residual_layers=2, num_residual_hiddens=512).to(self.device)
if self.gan:
self.discriminator = D_S2G(
pose_dim=110 + 64, pose=self.pose
).to(self.device)
else:
self.discriminator = None
if self.convert_to_6d:
self.c_index = c_index_6d
else:
self.c_index = c_index_3d
super().__init__(args, config)
def init_optimizer(self):
self.g_optimizer = optim.Adam(
self.g.parameters(),
lr=self.config.Train.learning_rate.generator_learning_rate,
betas=[0.9, 0.999]
)
def state_dict(self):
model_state = {
'g': self.g.state_dict(),
'g_optim': self.g_optimizer.state_dict(),
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None,
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None
}
return model_state
def __call__(self, bat):
# assert (not self.args.infer), "infer mode"
self.global_step += 1
total_loss = None
loss_dict = {}
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
# id = bat['speaker'].to(self.device) - 20
# id = F.one_hot(id, self.num_classes)
poses = poses[:, self.c_index, :]
gt_poses = poses[:, :, self.preleng:].permute(0, 2, 1)
loss = 0
loss_dict, loss = self.vq_train(gt_poses[:, :], 'g', self.g, loss_dict, loss)
return total_loss, loss_dict
def vq_train(self, gt, name, model, dict, total_loss, pre=None):
x_recon = model(gt_poses=gt, pre_state=pre)
loss, loss_dict = self.get_loss(pred_poses=x_recon, gt_poses=gt, pre=pre)
# total_loss = total_loss + loss
if name == 'g':
optimizer_name = 'g_optimizer'
optimizer = getattr(self, optimizer_name)
optimizer.zero_grad()
loss.backward()
optimizer.step()
for key in list(loss_dict.keys()):
dict[name + key] = loss_dict.get(key, 0).item()
return dict, total_loss
def get_loss(self,
pred_poses,
gt_poses,
pre=None
):
loss_dict = {}
rec_loss = torch.mean(torch.abs(pred_poses - gt_poses))
v_pr = pred_poses[:, 1:] - pred_poses[:, :-1]
v_gt = gt_poses[:, 1:] - gt_poses[:, :-1]
velocity_loss = torch.mean(torch.abs(v_pr - v_gt))
if pre is None:
f0_vel = 0
else:
v0_pr = pred_poses[:, 0] - pre[:, -1]
v0_gt = gt_poses[:, 0] - pre[:, -1]
f0_vel = torch.mean(torch.abs(v0_pr - v0_gt))
gen_loss = rec_loss + velocity_loss + f0_vel
loss_dict['rec_loss'] = rec_loss
loss_dict['velocity_loss'] = velocity_loss
# loss_dict['e_q_loss'] = e_q_loss
if pre is not None:
loss_dict['f0_vel'] = f0_vel
return gen_loss, loss_dict
def load_state_dict(self, state_dict):
self.g.load_state_dict(state_dict['g'])
def extract(self, x):
self.g.eval()
if x.shape[2] > self.full_dim:
if x.shape[2] == 239:
x = x[:, :, 102:]
x = x[:, :, self.c_index]
feat = self.g.encode(x)
return feat.transpose(1, 2), x
|