File size: 9,947 Bytes
f0c7f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .wav2vec import Wav2Vec2Model
from .vqvae_modules import VectorQuantizerEMA, ConvNormRelu, Res_CNR_Stack



class AudioEncoder(nn.Module):
    def __init__(self, in_dim, num_hiddens, num_residual_layers, num_residual_hiddens):
        super(AudioEncoder, self).__init__()
        self._num_hiddens = num_hiddens
        self._num_residual_layers = num_residual_layers
        self._num_residual_hiddens = num_residual_hiddens

        self.project = ConvNormRelu(in_dim, self._num_hiddens // 4, leaky=True)

        self._enc_1 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True)
        self._down_1 = ConvNormRelu(self._num_hiddens // 4, self._num_hiddens // 2, leaky=True, residual=True,
                                    sample='down')
        self._enc_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True)
        self._down_2 = ConvNormRelu(self._num_hiddens // 2, self._num_hiddens, leaky=True, residual=True, sample='down')
        self._enc_3 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True)

    def forward(self, x, frame_num=0):
        h = self.project(x)
        h = self._enc_1(h)
        h = self._down_1(h)
        h = self._enc_2(h)
        h = self._down_2(h)
        h = self._enc_3(h)
        return h


class Wav2VecEncoder(nn.Module):
    def __init__(self, num_hiddens, num_residual_layers):
        super(Wav2VecEncoder, self).__init__()
        self._num_hiddens = num_hiddens
        self._num_residual_layers = num_residual_layers

        self.audio_encoder = Wav2Vec2Model.from_pretrained(
            "facebook/wav2vec2-base-960h")  # "vitouphy/wav2vec2-xls-r-300m-phoneme""facebook/wav2vec2-base-960h"
        self.audio_encoder.feature_extractor._freeze_parameters()

        self.project = ConvNormRelu(768, self._num_hiddens, leaky=True)

        self._enc_1 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True)
        self._down_1 = ConvNormRelu(self._num_hiddens, self._num_hiddens, leaky=True, residual=True, sample='down')
        self._enc_2 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True)
        self._down_2 = ConvNormRelu(self._num_hiddens, self._num_hiddens, leaky=True, residual=True, sample='down')
        self._enc_3 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True)

    def forward(self, x, frame_num):
        h = self.audio_encoder(x.squeeze(), frame_num=frame_num).last_hidden_state.transpose(1, 2)
        h = self.project(h)
        h = self._enc_1(h)
        h = self._down_1(h)
        h = self._enc_2(h)
        h = self._down_2(h)
        h = self._enc_3(h)
        return h


class Encoder(nn.Module):
    def __init__(self, in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens):
        super(Encoder, self).__init__()
        self._num_hiddens = num_hiddens
        self._num_residual_layers = num_residual_layers
        self._num_residual_hiddens = num_residual_hiddens

        self.project = ConvNormRelu(in_dim, self._num_hiddens // 4, leaky=True)

        self._enc_1 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True)
        self._down_1 = ConvNormRelu(self._num_hiddens // 4, self._num_hiddens // 2, leaky=True, residual=True,
                                    sample='down')
        self._enc_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True)
        self._down_2 = ConvNormRelu(self._num_hiddens // 2, self._num_hiddens, leaky=True, residual=True, sample='down')
        self._enc_3 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True)

        self.pre_vq_conv = nn.Conv1d(self._num_hiddens, embedding_dim, 1, 1)

    def forward(self, x):
        h = self.project(x)
        h = self._enc_1(h)
        h = self._down_1(h)
        h = self._enc_2(h)
        h = self._down_2(h)
        h = self._enc_3(h)
        h = self.pre_vq_conv(h)
        return h


class Frame_Enc(nn.Module):
    def __init__(self, in_dim, num_hiddens):
        super(Frame_Enc, self).__init__()
        self.in_dim = in_dim
        self.num_hiddens = num_hiddens

        # self.enc = transformer_Enc(in_dim, num_hiddens, 2, 8, 256, 256, 256, 256, 0, dropout=0.1, n_position=4)
        self.proj = nn.Conv1d(in_dim, num_hiddens, 1, 1)
        self.enc = Res_CNR_Stack(num_hiddens, 2, leaky=True)
        self.proj_1 = nn.Conv1d(256*4, num_hiddens, 1, 1)
        self.proj_2 = nn.Conv1d(256*4, num_hiddens*2, 1, 1)

    def forward(self, x):
        # x = self.enc(x, None)[0].reshape(x.shape[0], -1, 1)
        x = self.enc(self.proj(x)).reshape(x.shape[0], -1, 1)
        second_last = self.proj_2(x)
        last = self.proj_1(x)
        return second_last, last



class Decoder(nn.Module):
    def __init__(self, out_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens, ae=False):
        super(Decoder, self).__init__()
        self._num_hiddens = num_hiddens
        self._num_residual_layers = num_residual_layers
        self._num_residual_hiddens = num_residual_hiddens

        self.aft_vq_conv = nn.Conv1d(embedding_dim, self._num_hiddens, 1, 1)

        self._dec_1 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True)
        self._up_2 = ConvNormRelu(self._num_hiddens, self._num_hiddens // 2, leaky=True, residual=True, sample='up')
        self._dec_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True)
        self._up_3 = ConvNormRelu(self._num_hiddens // 2, self._num_hiddens // 4, leaky=True, residual=True,
                                  sample='up')
        self._dec_3 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True)

        if ae:
            self.frame_enc = Frame_Enc(out_dim, self._num_hiddens // 4)
            self.gru_sl = nn.GRU(self._num_hiddens // 2, self._num_hiddens // 2, 1, batch_first=True)
            self.gru_l = nn.GRU(self._num_hiddens // 4, self._num_hiddens // 4, 1, batch_first=True)

        self.project = nn.Conv1d(self._num_hiddens // 4, out_dim, 1, 1)

    def forward(self, h, last_frame=None):

        h = self.aft_vq_conv(h)
        h = self._dec_1(h)
        h = self._up_2(h)
        h = self._dec_2(h)
        h = self._up_3(h)
        h = self._dec_3(h)

        recon = self.project(h)
        return recon, None


class Pre_VQ(nn.Module):
    def __init__(self, num_hiddens, embedding_dim, num_chunks):
        super(Pre_VQ, self).__init__()
        self.conv = nn.Conv1d(num_hiddens, num_hiddens, 1, 1, 0, groups=num_chunks)
        self.bn = nn.GroupNorm(num_chunks, num_hiddens)
        self.relu = nn.ReLU()
        self.proj = nn.Conv1d(num_hiddens, embedding_dim, 1, 1, 0, groups=num_chunks)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.proj(x)
        return x


class VQVAE(nn.Module):
    """VQ-VAE"""

    def __init__(self, in_dim, embedding_dim, num_embeddings,
                 num_hiddens, num_residual_layers, num_residual_hiddens,
                 commitment_cost=0.25, decay=0.99, share=False):
        super().__init__()
        self.in_dim = in_dim
        self.embedding_dim = embedding_dim
        self.num_embeddings = num_embeddings
        self.share_code_vq = share

        self.encoder = Encoder(in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens)
        self.vq_layer = VectorQuantizerEMA(embedding_dim, num_embeddings, commitment_cost, decay)
        self.decoder = Decoder(in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens)

    def forward(self, gt_poses, id=None, pre_state=None):
        z = self.encoder(gt_poses.transpose(1, 2))
        if not self.training:
            e, _ = self.vq_layer(z)
            x_recon, cur_state = self.decoder(e, pre_state.transpose(1, 2) if pre_state is not None else None)
            return e, x_recon

        e, e_q_loss = self.vq_layer(z)
        gt_recon, cur_state = self.decoder(e, pre_state.transpose(1, 2) if pre_state is not None else None)

        return e_q_loss, gt_recon.transpose(1, 2)

    def encode(self, gt_poses, id=None):
        z = self.encoder(gt_poses.transpose(1, 2))
        e, latents = self.vq_layer(z)
        return e, latents

    def decode(self, b, w, e=None, latents=None, pre_state=None):
        if e is not None:
            x = self.decoder(e, pre_state.transpose(1, 2) if pre_state is not None else None)
        else:
            e = self.vq_layer.quantize(latents)
            e = e.view(b, w, -1).permute(0, 2, 1).contiguous()
            x = self.decoder(e, pre_state.transpose(1, 2) if pre_state is not None else None)
        return x


class AE(nn.Module):
    """VQ-VAE"""

    def __init__(self, in_dim, embedding_dim, num_embeddings,
                 num_hiddens, num_residual_layers, num_residual_hiddens):
        super().__init__()
        self.in_dim = in_dim
        self.embedding_dim = embedding_dim
        self.num_embeddings = num_embeddings

        self.encoder = Encoder(in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens)
        self.decoder = Decoder(in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens, True)

    def forward(self, gt_poses, id=None, pre_state=None):
        z = self.encoder(gt_poses.transpose(1, 2))
        if not self.training:
            x_recon, cur_state = self.decoder(z, pre_state.transpose(1, 2) if pre_state is not None else None)
            return z, x_recon
        gt_recon, cur_state = self.decoder(z, pre_state.transpose(1, 2) if pre_state is not None else None)

        return gt_recon.transpose(1, 2)

    def encode(self, gt_poses, id=None):
        z = self.encoder(gt_poses.transpose(1, 2))
        return z