TalkShow / nets /LS3DCG.py
mvreddy13
Adding new Folders
f0c7f08
raw
history blame
13.7 kB
'''
not exactly the same as the official repo but the results are good
'''
import sys
import os
from data_utils.lower_body import c_index_3d, c_index_6d
sys.path.append(os.getcwd())
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import math
from nets.base import TrainWrapperBaseClass
from nets.layers import SeqEncoder1D
from losses import KeypointLoss, L1Loss, KLLoss
from data_utils.utils import get_melspec, get_mfcc_psf, get_mfcc_ta
from nets.utils import denormalize
class Conv1d_tf(nn.Conv1d):
"""
Conv1d with the padding behavior from TF
modified from https://github.com/mlperf/inference/blob/482f6a3beb7af2fb0bd2d91d6185d5e71c22c55f/others/edge/object_detection/ssd_mobilenet/pytorch/utils.py
"""
def __init__(self, *args, **kwargs):
super(Conv1d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get("padding", "same")
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(
0, (out_size - 1) * self.stride[dim] + effective_filter_size - input_size
)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == "VALID":
return F.conv1d(
input,
self.weight,
self.bias,
self.stride,
padding=0,
dilation=self.dilation,
groups=self.groups,
)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
if rows_odd:
input = F.pad(input, [0, rows_odd])
return F.conv1d(
input,
self.weight,
self.bias,
self.stride,
padding=(padding_rows // 2),
dilation=self.dilation,
groups=self.groups,
)
def ConvNormRelu(in_channels, out_channels, type='1d', downsample=False, k=None, s=None, norm='bn', padding='valid'):
if k is None and s is None:
if not downsample:
k = 3
s = 1
else:
k = 4
s = 2
if type == '1d':
conv_block = Conv1d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
if norm == 'bn':
norm_block = nn.BatchNorm1d(out_channels)
elif norm == 'ln':
norm_block = nn.LayerNorm(out_channels)
elif type == '2d':
conv_block = Conv2d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
norm_block = nn.BatchNorm2d(out_channels)
else:
assert False
return nn.Sequential(
conv_block,
norm_block,
nn.LeakyReLU(0.2, True)
)
class Decoder(nn.Module):
def __init__(self, in_ch, out_ch):
super(Decoder, self).__init__()
self.up1 = nn.Sequential(
ConvNormRelu(in_ch // 2 + in_ch, in_ch // 2),
ConvNormRelu(in_ch // 2, in_ch // 2),
nn.Upsample(scale_factor=2, mode='nearest')
)
self.up2 = nn.Sequential(
ConvNormRelu(in_ch // 4 + in_ch // 2, in_ch // 4),
ConvNormRelu(in_ch // 4, in_ch // 4),
nn.Upsample(scale_factor=2, mode='nearest')
)
self.up3 = nn.Sequential(
ConvNormRelu(in_ch // 8 + in_ch // 4, in_ch // 8),
ConvNormRelu(in_ch // 8, in_ch // 8),
nn.Conv1d(in_ch // 8, out_ch, 1, 1)
)
def forward(self, x, x1, x2, x3):
x = F.interpolate(x, x3.shape[2])
x = torch.cat([x, x3], dim=1)
x = self.up1(x)
x = F.interpolate(x, x2.shape[2])
x = torch.cat([x, x2], dim=1)
x = self.up2(x)
x = F.interpolate(x, x1.shape[2])
x = torch.cat([x, x1], dim=1)
x = self.up3(x)
return x
class EncoderDecoder(nn.Module):
def __init__(self, n_frames, each_dim):
super().__init__()
self.n_frames = n_frames
self.down1 = nn.Sequential(
ConvNormRelu(64, 64, '1d', False),
ConvNormRelu(64, 128, '1d', False),
)
self.down2 = nn.Sequential(
ConvNormRelu(128, 128, '1d', False),
ConvNormRelu(128, 256, '1d', False),
)
self.down3 = nn.Sequential(
ConvNormRelu(256, 256, '1d', False),
ConvNormRelu(256, 512, '1d', False),
)
self.down4 = nn.Sequential(
ConvNormRelu(512, 512, '1d', False),
ConvNormRelu(512, 1024, '1d', False),
)
self.down = nn.MaxPool1d(kernel_size=2)
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.face_decoder = Decoder(1024, each_dim[0] + each_dim[3])
self.body_decoder = Decoder(1024, each_dim[1])
self.hand_decoder = Decoder(1024, each_dim[2])
def forward(self, spectrogram, time_steps=None):
if time_steps is None:
time_steps = self.n_frames
x1 = self.down1(spectrogram)
x = self.down(x1)
x2 = self.down2(x)
x = self.down(x2)
x3 = self.down3(x)
x = self.down(x3)
x = self.down4(x)
x = self.up(x)
face = self.face_decoder(x, x1, x2, x3)
body = self.body_decoder(x, x1, x2, x3)
hand = self.hand_decoder(x, x1, x2, x3)
return face, body, hand
class Generator(nn.Module):
def __init__(self,
each_dim,
training=False,
device=None
):
super().__init__()
self.training = training
self.device = device
self.encoderdecoder = EncoderDecoder(15, each_dim)
def forward(self, in_spec, time_steps=None):
if time_steps is not None:
self.gen_length = time_steps
face, body, hand = self.encoderdecoder(in_spec)
out = torch.cat([face, body, hand], dim=1)
out = out.transpose(1, 2)
return out
class Discriminator(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.net = nn.Sequential(
ConvNormRelu(input_dim, 128, '1d'),
ConvNormRelu(128, 256, '1d'),
nn.MaxPool1d(kernel_size=2),
ConvNormRelu(256, 256, '1d'),
ConvNormRelu(256, 512, '1d'),
nn.MaxPool1d(kernel_size=2),
ConvNormRelu(512, 512, '1d'),
ConvNormRelu(512, 1024, '1d'),
nn.MaxPool1d(kernel_size=2),
nn.Conv1d(1024, 1, 1, 1),
nn.Sigmoid()
)
def forward(self, x):
x = x.transpose(1, 2)
out = self.net(x)
return out
class TrainWrapper(TrainWrapperBaseClass):
def __init__(self, args, config) -> None:
self.args = args
self.config = config
self.device = torch.device(self.args.gpu)
self.global_step = 0
self.convert_to_6d = self.config.Data.pose.convert_to_6d
self.init_params()
self.generator = Generator(
each_dim=self.each_dim,
training=not self.args.infer,
device=self.device,
).to(self.device)
self.discriminator = Discriminator(
input_dim=self.each_dim[1] + self.each_dim[2] + 64
).to(self.device)
if self.convert_to_6d:
self.c_index = c_index_6d
else:
self.c_index = c_index_3d
self.MSELoss = KeypointLoss().to(self.device)
self.L1Loss = L1Loss().to(self.device)
super().__init__(args, config)
def init_params(self):
scale = 1
global_orient = round(0 * scale)
leye_pose = reye_pose = round(0 * scale)
jaw_pose = round(3 * scale)
body_pose = round((63 - 24) * scale)
left_hand_pose = right_hand_pose = round(45 * scale)
expression = 100
b_j = 0
jaw_dim = jaw_pose
b_e = b_j + jaw_dim
eye_dim = leye_pose + reye_pose
b_b = b_e + eye_dim
body_dim = global_orient + body_pose
b_h = b_b + body_dim
hand_dim = left_hand_pose + right_hand_pose
b_f = b_h + hand_dim
face_dim = expression
self.dim_list = [b_j, b_e, b_b, b_h, b_f]
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim
self.pose = int(self.full_dim / round(3 * scale))
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]
def __call__(self, bat):
assert (not self.args.infer), "infer mode"
self.global_step += 1
loss_dict = {}
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
expression = bat['expression'].to(self.device).to(torch.float32)
jaw = poses[:, :3, :]
poses = poses[:, self.c_index, :]
pred = self.generator(in_spec=aud)
D_loss, D_loss_dict = self.get_loss(
pred_poses=pred.detach(),
gt_poses=poses,
aud=aud,
mode='training_D',
)
self.discriminator_optimizer.zero_grad()
D_loss.backward()
self.discriminator_optimizer.step()
G_loss, G_loss_dict = self.get_loss(
pred_poses=pred,
gt_poses=poses,
aud=aud,
expression=expression,
jaw=jaw,
mode='training_G',
)
self.generator_optimizer.zero_grad()
G_loss.backward()
self.generator_optimizer.step()
total_loss = None
loss_dict = {}
for key in list(D_loss_dict.keys()) + list(G_loss_dict.keys()):
loss_dict[key] = G_loss_dict.get(key, 0) + D_loss_dict.get(key, 0)
return total_loss, loss_dict
def get_loss(self,
pred_poses,
gt_poses,
aud=None,
jaw=None,
expression=None,
mode='training_G',
):
loss_dict = {}
aud = aud.transpose(1, 2)
gt_poses = gt_poses.transpose(1, 2)
gt_aud = torch.cat([gt_poses, aud], dim=2)
pred_aud = torch.cat([pred_poses[:, :, 103:], aud], dim=2)
if mode == 'training_D':
dis_real = self.discriminator(gt_aud)
dis_fake = self.discriminator(pred_aud)
dis_error = self.MSELoss(torch.ones_like(dis_real).to(self.device), dis_real) + self.MSELoss(
torch.zeros_like(dis_fake).to(self.device), dis_fake)
loss_dict['dis'] = dis_error
return dis_error, loss_dict
elif mode == 'training_G':
jaw_loss = self.L1Loss(pred_poses[:, :, :3], jaw.transpose(1, 2))
face_loss = self.MSELoss(pred_poses[:, :, 3:103], expression.transpose(1, 2))
body_loss = self.L1Loss(pred_poses[:, :, 103:142], gt_poses[:, :, :39])
hand_loss = self.L1Loss(pred_poses[:, :, 142:], gt_poses[:, :, 39:])
l1_loss = jaw_loss + face_loss + body_loss + hand_loss
dis_output = self.discriminator(pred_aud)
gen_error = self.MSELoss(torch.ones_like(dis_output).to(self.device), dis_output)
gen_loss = self.config.Train.weights.keypoint_loss_weight * l1_loss + self.config.Train.weights.gan_loss_weight * gen_error
loss_dict['gen'] = gen_error
loss_dict['jaw_loss'] = jaw_loss
loss_dict['face_loss'] = face_loss
loss_dict['body_loss'] = body_loss
loss_dict['hand_loss'] = hand_loss
return gen_loss, loss_dict
else:
raise ValueError(mode)
def infer_on_audio(self, aud_fn, fps=30, initial_pose=None, norm_stats=None, id=None, B=1, **kwargs):
output = []
assert self.args.infer, "train mode"
self.generator.eval()
if self.config.Data.pose.normalization:
assert norm_stats is not None
data_mean = norm_stats[0]
data_std = norm_stats[1]
pre_length = self.config.Data.pose.pre_pose_length
generate_length = self.config.Data.pose.generate_length
# assert pre_length == initial_pose.shape[-1]
# pre_poses = initial_pose.permute(0, 2, 1).to(self.device).to(torch.float32)
# B = pre_poses.shape[0]
aud_feat = get_mfcc_ta(aud_fn, sr=22000, fps=fps, smlpx=True, type='mfcc').transpose(1, 0)
num_poses_to_generate = aud_feat.shape[-1]
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device)
with torch.no_grad():
pred_poses = self.generator(aud_feat)
pred_poses = pred_poses.cpu().numpy()
output = pred_poses.squeeze()
return output
def generate(self, aud, id):
self.generator.eval()
pred_poses = self.generator(aud)
return pred_poses
if __name__ == '__main__':
from trainer.options import parse_args
parser = parse_args()
args = parser.parse_args(
['--exp_name', '0', '--data_root', '0', '--speakers', '0', '--pre_pose_length', '4', '--generate_length', '64',
'--infer'])
generator = TrainWrapper(args)
aud_fn = '../sample_audio/jon.wav'
initial_pose = torch.randn(64, 108, 4)
norm_stats = (np.random.randn(108), np.random.randn(108))
output = generator.infer_on_audio(aud_fn, initial_pose, norm_stats)
print(output.shape)