|
import os |
|
import pickle |
|
from tqdm import tqdm |
|
import shutil |
|
import torch |
|
import numpy as np |
|
import librosa |
|
import random |
|
|
|
speakers = ['seth', 'conan', 'oliver', 'chemistry'] |
|
data_root = "../ExpressiveWholeBodyDatasetv1.0/" |
|
split = 'train' |
|
|
|
|
|
|
|
def split_list(full_list,shuffle=False,ratio=0.2): |
|
n_total = len(full_list) |
|
offset_0 = int(n_total * ratio) |
|
offset_1 = int(n_total * ratio * 2) |
|
if n_total==0 or offset_1<1: |
|
return [],full_list |
|
if shuffle: |
|
random.shuffle(full_list) |
|
sublist_0 = full_list[:offset_0] |
|
sublist_1 = full_list[offset_0:offset_1] |
|
sublist_2 = full_list[offset_1:] |
|
return sublist_0, sublist_1, sublist_2 |
|
|
|
|
|
def moveto(list, file): |
|
for f in list: |
|
before, after = '/'.join(f.split('/')[:-1]), f.split('/')[-1] |
|
new_path = os.path.join(before, file) |
|
new_path = os.path.join(new_path, after) |
|
|
|
|
|
|
|
|
|
|
|
shutil.copytree(f, new_path) |
|
|
|
shutil.rmtree(f) |
|
return None |
|
|
|
|
|
def read_pkl(data): |
|
betas = np.array(data['betas']) |
|
|
|
jaw_pose = np.array(data['jaw_pose']) |
|
leye_pose = np.array(data['leye_pose']) |
|
reye_pose = np.array(data['reye_pose']) |
|
global_orient = np.array(data['global_orient']).squeeze() |
|
body_pose = np.array(data['body_pose_axis']) |
|
left_hand_pose = np.array(data['left_hand_pose']) |
|
right_hand_pose = np.array(data['right_hand_pose']) |
|
|
|
full_body = np.concatenate( |
|
(jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose), axis=1) |
|
|
|
expression = np.array(data['expression']) |
|
full_body = np.concatenate((full_body, expression), axis=1) |
|
|
|
if (full_body.shape[0] < 90) or (torch.isnan(torch.from_numpy(full_body)).sum() > 0): |
|
return 1 |
|
else: |
|
return 0 |
|
|
|
|
|
for speaker_name in speakers: |
|
speaker_root = os.path.join(data_root, speaker_name) |
|
|
|
videos = [v for v in os.listdir(speaker_root)] |
|
print(videos) |
|
|
|
haode = huaide = 0 |
|
total_seqs = [] |
|
|
|
for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)): |
|
|
|
source_vid = vid |
|
vid_pth = os.path.join(speaker_root, source_vid) |
|
|
|
t = os.path.join(speaker_root, source_vid, 'test') |
|
v = os.path.join(speaker_root, source_vid, 'val') |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
seqs = [s for s in os.listdir(vid_pth)] |
|
except: |
|
continue |
|
|
|
|
|
|
|
for s in seqs: |
|
quality = 0 |
|
total_seqs.append(os.path.join(vid_pth,s)) |
|
seq_root = os.path.join(vid_pth, s) |
|
key = seq_root |
|
audio_fname = os.path.join(speaker_root, source_vid, s, '%s.wav' % (s)) |
|
|
|
|
|
if os.path.isfile(audio_fname): |
|
try: |
|
audio = librosa.load(audio_fname) |
|
except: |
|
|
|
shutil.rmtree(key) |
|
huaide = huaide + 1 |
|
continue |
|
else: |
|
huaide = huaide + 1 |
|
|
|
shutil.rmtree(key) |
|
continue |
|
|
|
|
|
motion_fname = os.path.join(speaker_root, source_vid, s, '%s.pkl' % (s)) |
|
try: |
|
f = open(motion_fname, 'rb+') |
|
except: |
|
shutil.rmtree(key) |
|
huaide = huaide + 1 |
|
continue |
|
|
|
data = pickle.load(f) |
|
w = read_pkl(data) |
|
f.close() |
|
quality = quality + w |
|
|
|
if w == 1: |
|
shutil.rmtree(key) |
|
|
|
huaide = huaide + 1 |
|
continue |
|
|
|
haode = haode + 1 |
|
|
|
print("huaide:{}, haode:{}, total_seqs:{}".format(huaide, haode, total_seqs.__len__())) |
|
|
|
for speaker_name in speakers: |
|
speaker_root = os.path.join(data_root, speaker_name) |
|
|
|
videos = [v for v in os.listdir(speaker_root)] |
|
print(videos) |
|
|
|
haode = huaide = 0 |
|
total_seqs = [] |
|
|
|
for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)): |
|
|
|
source_vid = vid |
|
vid_pth = os.path.join(speaker_root, source_vid) |
|
try: |
|
seqs = [s for s in os.listdir(vid_pth)] |
|
except: |
|
continue |
|
for s in seqs: |
|
quality = 0 |
|
total_seqs.append(os.path.join(vid_pth, s)) |
|
print("total_seqs:{}".format(total_seqs.__len__())) |
|
|
|
test_list, val_list, train_list = split_list(total_seqs, True, 0.1) |
|
print(len(test_list), len(val_list), len(train_list)) |
|
moveto(train_list, 'train') |
|
moveto(test_list, 'test') |
|
moveto(val_list, 'val') |
|
|
|
|