|
import numpy as np |
|
import torch |
|
|
|
lower_pose = torch.tensor( |
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0747, -0.0158, -0.0152, -1.1826512813568115, 0.23866955935955048, |
|
0.15146760642528534, -1.2604516744613647, -0.3160211145877838, |
|
-0.1603458970785141, 1.1654603481292725, 0.0, 0.0, 1.2521806955337524, 0.041598282754421234, -0.06312154978513718, |
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) |
|
lower_pose_stand = torch.tensor([ |
|
8.9759e-04, 7.1074e-04, -5.9163e-06, 8.9759e-04, 7.1074e-04, -5.9163e-06, |
|
3.0747, -0.0158, -0.0152, |
|
-3.6665e-01, -8.8455e-03, 1.6113e-01, -3.6665e-01, -8.8455e-03, 1.6113e-01, |
|
-3.9716e-01, -4.0229e-02, -1.2637e-01, |
|
7.9163e-01, 6.8519e-02, -1.5091e-01, 7.9163e-01, 6.8519e-02, -1.5091e-01, |
|
7.8632e-01, -4.3810e-02, 1.4375e-02, |
|
-1.0675e-01, 1.2635e-01, 1.6711e-02, -1.0675e-01, 1.2635e-01, 1.6711e-02, ]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lower_body = [0, 1, 3, 4, 6, 7, 9, 10] |
|
count_part = [6, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, |
|
29, 30, 31, 32, 33, 34, 35, 36, 37, |
|
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] |
|
fix_index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, |
|
29, |
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, |
|
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, |
|
65, 66, 67, 68, 69, 70, 71, 72, 73, 74] |
|
all_index = np.ones(275) |
|
all_index[fix_index] = 0 |
|
c_index = [] |
|
i = 0 |
|
for num in all_index: |
|
if num == 1: |
|
c_index.append(i) |
|
i = i + 1 |
|
c_index = np.asarray(c_index) |
|
|
|
fix_index_3d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
|
21, 22, 23, 24, 25, 26, |
|
30, 31, 32, 33, 34, 35, |
|
45, 46, 47, 48, 49, 50] |
|
all_index_3d = np.ones(165) |
|
all_index_3d[fix_index_3d] = 0 |
|
c_index_3d = [] |
|
i = 0 |
|
for num in all_index_3d: |
|
if num == 1: |
|
c_index_3d.append(i) |
|
i = i + 1 |
|
c_index_3d = np.asarray(c_index_3d) |
|
|
|
c_index_6d = [] |
|
i = 0 |
|
for num in all_index_3d: |
|
if num == 1: |
|
c_index_6d.append(2*i) |
|
c_index_6d.append(2 * i + 1) |
|
i = i + 1 |
|
c_index_6d = np.asarray(c_index_6d) |
|
|
|
|
|
def part2full(input, stand=False): |
|
if stand: |
|
|
|
lp = torch.zeros_like(lower_pose) |
|
lp[6:9] = torch.tensor([3.0747, -0.0158, -0.0152]) |
|
lp = lp.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device) |
|
else: |
|
lp = lower_pose.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device) |
|
|
|
input = torch.cat([input[:, :3], |
|
lp[:, :15], |
|
input[:, 3:6], |
|
lp[:, 15:21], |
|
input[:, 6:9], |
|
lp[:, 21:27], |
|
input[:, 9:12], |
|
lp[:, 27:], |
|
input[:, 12:]] |
|
, dim=1) |
|
return input |
|
|
|
|
|
def pred2poses(input, gt): |
|
input = torch.cat([input[:, :3], |
|
gt[0:1, 3:18].repeat(input.shape[0], 1), |
|
input[:, 3:6], |
|
gt[0:1, 21:27].repeat(input.shape[0], 1), |
|
input[:, 6:9], |
|
gt[0:1, 30:36].repeat(input.shape[0], 1), |
|
input[:, 9:12], |
|
gt[0:1, 39:45].repeat(input.shape[0], 1), |
|
input[:, 12:]] |
|
, dim=1) |
|
return input |
|
|
|
|
|
def poses2poses(input, gt): |
|
input = torch.cat([input[:, :3], |
|
gt[0:1, 3:18].repeat(input.shape[0], 1), |
|
input[:, 18:21], |
|
gt[0:1, 21:27].repeat(input.shape[0], 1), |
|
input[:, 27:30], |
|
gt[0:1, 30:36].repeat(input.shape[0], 1), |
|
input[:, 36:39], |
|
gt[0:1, 39:45].repeat(input.shape[0], 1), |
|
input[:, 45:]] |
|
, dim=1) |
|
return input |
|
|
|
def poses2pred(input, stand=False): |
|
if stand: |
|
lp = lower_pose_stand.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device) |
|
|
|
else: |
|
lp = lower_pose.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device) |
|
input = torch.cat([input[:, :3], |
|
lp[:, :15], |
|
input[:, 18:21], |
|
lp[:, 15:21], |
|
input[:, 27:30], |
|
lp[:, 21:27], |
|
input[:, 36:39], |
|
lp[:, 27:], |
|
input[:, 45:]] |
|
, dim=1) |
|
return input |
|
|
|
|
|
rearrange = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]\ |
|
|
|
|
|
|
|
|
|
symmetry = [0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1] |
|
|
|
|
|
|