|
''' |
|
''' |
|
import os |
|
import sys |
|
sys.path.append(os.getcwd()) |
|
|
|
from glob import glob |
|
|
|
from argparse import ArgumentParser |
|
import json |
|
|
|
from evaluation.util import * |
|
from evaluation.metrics import * |
|
from tqdm import tqdm |
|
|
|
parser = ArgumentParser() |
|
parser.add_argument('--speaker', required=True, type=str) |
|
parser.add_argument('--post_fix', nargs='+', default=['paper_model'], type=str) |
|
args = parser.parse_args() |
|
|
|
speaker = args.speaker |
|
test_audios = sorted(glob('pose_dataset/videos/test_audios/%s/*.wav'%(speaker))) |
|
|
|
quality_samples={'gt':[]} |
|
for post_fix in args.post_fix: |
|
quality_samples[post_fix] = [] |
|
|
|
for aud in tqdm(test_audios): |
|
base_name = os.path.splitext(aud)[0] |
|
gt_path = get_full_path(aud, speaker, 'val') |
|
_, gt_poses, _ = get_gts(gt_path) |
|
gt_poses = gt_poses[np.newaxis,...] |
|
gt_valid_points = valid_points(gt_poses) |
|
|
|
quality_samples['gt'].append(gt_valid_points) |
|
|
|
for post_fix in args.post_fix: |
|
pred_path = base_name + '_'+post_fix+'.json' |
|
pred_poses = np.array(json.load(open(pred_path))) |
|
|
|
pred_poses = cvt25(pred_poses, gt_poses) |
|
|
|
|
|
pred_valid_points = valid_points(pred_poses)[0:1] |
|
quality_samples[post_fix].append(pred_valid_points) |
|
|
|
quality_samples['gt'] = np.concatenate(quality_samples['gt'], axis=1) |
|
for post_fix in args.post_fix: |
|
quality_samples[post_fix] = np.concatenate(quality_samples[post_fix], axis=1) |
|
|
|
print('gt:', quality_samples['gt'].shape) |
|
quality_samples['gt'] = quality_samples['gt'].tolist() |
|
for post_fix in args.post_fix: |
|
print(post_fix, ':', quality_samples[post_fix].shape) |
|
quality_samples[post_fix] = quality_samples[post_fix].tolist() |
|
|
|
save_dir = '../../experiments/' |
|
os.makedirs(save_dir, exist_ok=True) |
|
save_name = os.path.join(save_dir, 'quality_samples_%s.json'%(speaker)) |
|
with open(save_name, 'w') as f: |
|
json.dump(quality_samples, f) |
|
|
|
|