|
''' |
|
Warning: metrics are for reference only, may have limited significance |
|
''' |
|
import os |
|
import sys |
|
sys.path.append(os.getcwd()) |
|
import numpy as np |
|
import torch |
|
|
|
from data_utils.lower_body import rearrange, symmetry |
|
import torch.nn.functional as F |
|
|
|
def data_driven_baselines(gt_kps): |
|
''' |
|
gt_kps: T, D |
|
''' |
|
gt_velocity = np.abs(gt_kps[1:] - gt_kps[:-1]) |
|
|
|
mean= np.mean(gt_velocity, axis=0)[np.newaxis] |
|
mean = np.mean(np.abs(gt_velocity-mean)) |
|
last_step = gt_kps[1] - gt_kps[0] |
|
last_step = last_step[np.newaxis] |
|
last_step = np.mean(np.abs(gt_velocity-last_step)) |
|
return last_step, mean |
|
|
|
def Batch_LVD(gt_kps, pr_kps, symmetrical, weight): |
|
if gt_kps.shape[0] > pr_kps.shape[1]: |
|
length = pr_kps.shape[1] |
|
else: |
|
length = gt_kps.shape[0] |
|
gt_kps = gt_kps[:length] |
|
pr_kps = pr_kps[:, :length] |
|
global symmetry |
|
symmetry = torch.tensor(symmetry).bool() |
|
|
|
if symmetrical: |
|
|
|
gt_kps = gt_kps[:, rearrange] |
|
ns_gt_kps = gt_kps[:, ~symmetry] |
|
ys_gt_kps = gt_kps[:, symmetry] |
|
ys_gt_kps = ys_gt_kps.reshape(ys_gt_kps.shape[0], -1, 2, 3) |
|
ns_gt_velocity = (ns_gt_kps[1:] - ns_gt_kps[:-1]).norm(p=2, dim=-1) |
|
ys_gt_velocity = (ys_gt_kps[1:] - ys_gt_kps[:-1]).norm(p=2, dim=-1) |
|
left_gt_vel = ys_gt_velocity[:, :, 0].sum(dim=-1) |
|
right_gt_vel = ys_gt_velocity[:, :, 1].sum(dim=-1) |
|
move_side = torch.where(left_gt_vel>right_gt_vel, torch.ones(left_gt_vel.shape).cuda(), torch.zeros(left_gt_vel.shape).cuda()) |
|
ys_gt_velocity = torch.mul(ys_gt_velocity[:, :, 0].transpose(0,1), move_side) + torch.mul(ys_gt_velocity[:, :, 1].transpose(0,1), ~move_side.bool()) |
|
ys_gt_velocity = ys_gt_velocity.transpose(0,1) |
|
gt_velocity = torch.cat([ns_gt_velocity, ys_gt_velocity], dim=1) |
|
|
|
pr_kps = pr_kps[:, :, rearrange] |
|
ns_pr_kps = pr_kps[:, :, ~symmetry] |
|
ys_pr_kps = pr_kps[:, :, symmetry] |
|
ys_pr_kps = ys_pr_kps.reshape(ys_pr_kps.shape[0], ys_pr_kps.shape[1], -1, 2, 3) |
|
ns_pr_velocity = (ns_pr_kps[:, 1:] - ns_pr_kps[:, :-1]).norm(p=2, dim=-1) |
|
ys_pr_velocity = (ys_pr_kps[:, 1:] - ys_pr_kps[:, :-1]).norm(p=2, dim=-1) |
|
left_pr_vel = ys_pr_velocity[:, :, :, 0].sum(dim=-1) |
|
right_pr_vel = ys_pr_velocity[:, :, :, 1].sum(dim=-1) |
|
move_side = torch.where(left_pr_vel > right_pr_vel, torch.ones(left_pr_vel.shape).cuda(), |
|
torch.zeros(left_pr_vel.shape).cuda()) |
|
ys_pr_velocity = torch.mul(ys_pr_velocity[..., 0].permute(2, 0, 1), move_side) + torch.mul( |
|
ys_pr_velocity[..., 1].permute(2, 0, 1), ~move_side.long()) |
|
ys_pr_velocity = ys_pr_velocity.permute(1, 2, 0) |
|
pr_velocity = torch.cat([ns_pr_velocity, ys_pr_velocity], dim=2) |
|
else: |
|
gt_velocity = (gt_kps[1:] - gt_kps[:-1]).norm(p=2, dim=-1) |
|
pr_velocity = (pr_kps[:, 1:] - pr_kps[:, :-1]).norm(p=2, dim=-1) |
|
|
|
if weight: |
|
w = F.softmax(gt_velocity.sum(dim=1).normal_(), dim=0) |
|
else: |
|
w = 1 / gt_velocity.shape[0] |
|
|
|
v_diff = ((pr_velocity - gt_velocity).abs().sum(dim=-1) * w).sum(dim=-1).mean() |
|
|
|
return v_diff |
|
|
|
|
|
def LVD(gt_kps, pr_kps, symmetrical=False, weight=False): |
|
gt_kps = gt_kps.squeeze() |
|
pr_kps = pr_kps.squeeze() |
|
if len(pr_kps.shape) == 4: |
|
return Batch_LVD(gt_kps, pr_kps, symmetrical, weight) |
|
|
|
length = gt_kps.shape[0]-10 |
|
|
|
|
|
|
|
|
|
|
|
gt_velocity = (gt_kps[1:] - gt_kps[:-1]).norm(p=2, dim=-1) |
|
pr_velocity = (pr_kps[1:] - pr_kps[:-1]).norm(p=2, dim=-1) |
|
|
|
return (pr_velocity-gt_velocity).abs().sum(dim=-1).mean() |
|
|
|
def diversity(kps): |
|
''' |
|
kps: bs, seq, dim |
|
''' |
|
dis_list = [] |
|
|
|
for i in range(kps.shape[0]): |
|
for j in range(i+1, kps.shape[0]): |
|
seq_i = kps[i] |
|
seq_j = kps[j] |
|
|
|
dis = np.mean(np.abs(seq_i - seq_j)) |
|
dis_list.append(dis) |
|
return np.mean(dis_list) |
|
|