|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
|
|
class TrainWrapperBaseClass(): |
|
def __init__(self, args, config) -> None: |
|
self.init_optimizer() |
|
|
|
def init_optimizer(self) -> None: |
|
print('using Adam') |
|
self.generator_optimizer = optim.Adam( |
|
self.generator.parameters(), |
|
lr = self.config.Train.learning_rate.generator_learning_rate, |
|
betas=[0.9, 0.999] |
|
) |
|
if self.discriminator is not None: |
|
self.discriminator_optimizer = optim.Adam( |
|
self.discriminator.parameters(), |
|
lr = self.config.Train.learning_rate.discriminator_learning_rate, |
|
betas=[0.9, 0.999] |
|
) |
|
|
|
def __call__(self, bat): |
|
raise NotImplementedError |
|
|
|
def get_loss(self, **kwargs): |
|
raise NotImplementedError |
|
|
|
def state_dict(self): |
|
model_state = { |
|
'generator': self.generator.state_dict(), |
|
'generator_optim': self.generator_optimizer.state_dict(), |
|
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, |
|
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None |
|
} |
|
return model_state |
|
|
|
def parameters(self): |
|
return self.generator.parameters() |
|
|
|
def load_state_dict(self, state_dict): |
|
if 'generator' in state_dict: |
|
self.generator.load_state_dict(state_dict['generator']) |
|
else: |
|
self.generator.load_state_dict(state_dict) |
|
|
|
if 'generator_optim' in state_dict and self.generator_optimizer is not None: |
|
self.generator_optimizer.load_state_dict(state_dict['generator_optim']) |
|
|
|
if self.discriminator is not None: |
|
self.discriminator.load_state_dict(state_dict['discriminator']) |
|
|
|
if 'discriminator_optim' in state_dict and self.discriminator_optimizer is not None: |
|
self.discriminator_optimizer.load_state_dict(state_dict['discriminator_optim']) |
|
|
|
def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, **kwargs): |
|
raise NotImplementedError |
|
|
|
def init_params(self): |
|
if self.config.Data.pose.convert_to_6d: |
|
scale = 2 |
|
else: |
|
scale = 1 |
|
|
|
global_orient = round(0 * scale) |
|
leye_pose = reye_pose = round(0 * scale) |
|
jaw_pose = round(0 * scale) |
|
body_pose = round((63 - 24) * scale) |
|
left_hand_pose = right_hand_pose = round(45 * scale) |
|
if self.expression: |
|
expression = 100 |
|
else: |
|
expression = 0 |
|
|
|
b_j = 0 |
|
jaw_dim = jaw_pose |
|
b_e = b_j + jaw_dim |
|
eye_dim = leye_pose + reye_pose |
|
b_b = b_e + eye_dim |
|
body_dim = global_orient + body_pose |
|
b_h = b_b + body_dim |
|
hand_dim = left_hand_pose + right_hand_pose |
|
b_f = b_h + hand_dim |
|
face_dim = expression |
|
|
|
self.dim_list = [b_j, b_e, b_b, b_h, b_f] |
|
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim |
|
self.pose = int(self.full_dim / round(3 * scale)) |
|
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim] |