|
import os |
|
import sys |
|
|
|
from transformers import Wav2Vec2Processor |
|
from visualise.rendering import RenderTool |
|
|
|
sys.path.append(os.getcwd()) |
|
from glob import glob |
|
|
|
import numpy as np |
|
import json |
|
import smplx as smpl |
|
|
|
from nets import * |
|
from trainer.options import parse_args |
|
from data_utils import torch_data |
|
from trainer.config import load_JsonConfig |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils import data |
|
from scripts.diversity import init_model, init_dataloader, get_vertices |
|
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses |
|
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle |
|
import time |
|
|
|
|
|
global_orient = torch.tensor([3.0747, -0.0158, -0.0152]) |
|
|
|
|
|
def infer(data_root, g_body, g_face, g_body2, exp_name, infer_loader, infer_set, device, norm_stats, smplx, |
|
smplx_model, rendertool, args=None, config=None, var=None): |
|
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme") |
|
am_sr = 16000 |
|
num_sample = 1 |
|
face = False |
|
if face: |
|
body_static = torch.zeros([1, 162], device='cuda') |
|
body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1) |
|
stand = False |
|
j = 0 |
|
gt_0 = None |
|
|
|
for bat in infer_loader: |
|
poses_ = bat['poses'].to(torch.float32).to(device) |
|
if poses_.shape[-1] == 300: |
|
j = j + 1 |
|
if j > 1000: |
|
continue |
|
id = bat['speaker'].to('cuda') - 20 |
|
if config.Data.pose.expression: |
|
expression = bat['expression'].to(device).to(torch.float32) |
|
poses = torch.cat([poses_, expression], dim=1) |
|
else: |
|
poses = poses_ |
|
cur_wav_file = bat['aud_file'][0] |
|
betas = bat['betas'][0].to(torch.float64).to('cuda') |
|
|
|
gt = poses.to('cuda').squeeze().transpose(1, 0) |
|
if config.Data.pose.normalization: |
|
gt = denormalize(gt, norm_stats[0], norm_stats[1]).squeeze(dim=0) |
|
if config.Data.pose.convert_to_6d: |
|
if config.Data.pose.expression: |
|
gt_exp = gt[:, -100:] |
|
gt = gt[:, :-100] |
|
|
|
gt = gt.reshape(gt.shape[0], -1, 6) |
|
gt = matrix_to_axis_angle(rotation_6d_to_matrix(gt)).reshape(gt.shape[0], -1) |
|
gt = torch.cat([gt, gt_exp], -1) |
|
if face: |
|
gt = torch.cat([gt[:, :3], body_static.repeat(gt.shape[0], 1), gt[:, -100:]], dim=-1) |
|
|
|
result_list = [gt] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pred_face = torch.zeros([gt.shape[0], 103], device='cuda') |
|
pred_jaw = pred_face[:, :3] |
|
pred_face = pred_face[:, 3:] |
|
|
|
|
|
|
|
for i in range(num_sample): |
|
pred_res = g_body.infer_on_audio(cur_wav_file, |
|
initial_pose=poses_, |
|
norm_stats=norm_stats, |
|
txgfile=None, |
|
id=id, |
|
var=var, |
|
fps=30, |
|
continuity=True, |
|
smooth=False |
|
) |
|
pred = torch.tensor(pred_res).squeeze().to('cuda') |
|
|
|
if pred.shape[0] < pred_face.shape[0]: |
|
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1) |
|
pred = torch.cat([pred, repeat_frame], dim=0) |
|
else: |
|
pred = pred[:pred_face.shape[0], :] |
|
|
|
if config.Data.pose.convert_to_6d: |
|
pred = pred.reshape(pred.shape[0], -1, 6) |
|
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred)) |
|
pred = pred.reshape(pred.shape[0], -1) |
|
|
|
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1) |
|
|
|
pred = part2full(pred, stand) |
|
if face: |
|
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
result_list.append(pred) |
|
|
|
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression) |
|
|
|
result_list = [res.to('cpu') for res in result_list] |
|
dict = np.concatenate(result_list[1:], axis=0) |
|
file_name = 'visualise/video/' + config.Log.name + '/' + \ |
|
cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1] |
|
np.save(file_name, dict) |
|
|
|
rendertool._render_continuity(cur_wav_file, vertices_list[1], frame=60) |
|
|
|
|
|
def main(): |
|
parser = parse_args() |
|
args = parser.parse_args() |
|
device = torch.device(args.gpu) |
|
torch.cuda.set_device(device) |
|
|
|
config = load_JsonConfig(args.config_file) |
|
|
|
smplx = True |
|
|
|
os.environ['smplx_npz_path'] = config.smplx_npz_path |
|
os.environ['extra_joint_path'] = config.extra_joint_path |
|
os.environ['j14_regressor_path'] = config.j14_regressor_path |
|
|
|
print('init model...') |
|
body_model_name = 's2g_body_pixel' |
|
body_model_path = './experiments/2022-12-31-smplx_S2G-body-pixel-conti-wide/ckpt-99.pth' |
|
generator = init_model(body_model_name, body_model_path, args, config) |
|
|
|
|
|
|
|
|
|
generator_face = None |
|
print('init dataloader...') |
|
infer_set, infer_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config) |
|
|
|
print('init smlpx model...') |
|
dtype = torch.float64 |
|
model_params = dict(model_path='E:/PycharmProjects/Motion-Projects/models', |
|
model_type='smplx', |
|
create_global_orient=True, |
|
create_body_pose=True, |
|
create_betas=True, |
|
num_betas=300, |
|
create_left_hand_pose=True, |
|
create_right_hand_pose=True, |
|
use_pca=False, |
|
flat_hand_mean=False, |
|
create_expression=True, |
|
num_expression_coeffs=100, |
|
num_pca_comps=12, |
|
create_jaw_pose=True, |
|
create_leye_pose=True, |
|
create_reye_pose=True, |
|
create_transl=False, |
|
|
|
dtype=dtype, ) |
|
smplx_model = smpl.create(**model_params).to('cuda') |
|
print('init rendertool...') |
|
rendertool = RenderTool('visualise/video/' + config.Log.name) |
|
|
|
infer(config.Data.data_root, generator, generator_face, None, args.exp_name, infer_loader, infer_set, device, |
|
norm_stats, smplx, smplx_model, rendertool, args, config, (None, None)) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|