strateg17 commited on
Commit
20adaed
·
1 Parent(s): 0b0de1e

initial commit

Browse files
Files changed (2) hide show
  1. app.py +34 -0
  2. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import lightgbm as lgb
3
+ import joblib
4
+
5
+ # Load your trained model (assuming it's saved as 'lgbm_model.pkl')
6
+ model = joblib.load('lgbm_model.pkl')
7
+
8
+ def classify_text(text):
9
+ # Convert the input text to the appropriate format for your model
10
+ # For simplicity, let's assume you have a function `preprocess_text` for this
11
+ # processed_text = preprocess_text(text)
12
+
13
+ # If your model expects numerical features, convert text to numerical features
14
+ # For example:
15
+ # features = text_to_features(processed_text)
16
+
17
+ # Here, we assume the model can take raw text directly for simplicity
18
+ prediction = model.predict([text])
19
+
20
+ return int(prediction[0])
21
+
22
+ # Create the Gradio interface
23
+ iface = gr.Interface(
24
+ fn=classify_text,
25
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
26
+ outputs=gr.outputs.Label(num_top_classes=1),
27
+ title="Fake News Classifier",
28
+ description="Enter text to classify if it's fake (1) or not fake (0).",
29
+ examples=["This is a sample news article."]
30
+ )
31
+
32
+ # Launch the interface
33
+ if __name__ == "__main__":
34
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ lightgbm