File size: 1,339 Bytes
0b0f289
 
 
62a4b51
0b0f289
 
 
62a4b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b0f289
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from transformers import T5Tokenizer, T5ForCausalLM, Trainer, TrainingArguments

app = FastAPI()

# Initialize the tokenizer and model
tokenizer = T5Tokenizer.from_pretrained("t5-base")
model = T5ForCausalLM.from_pretrained("t5-base")

with open("cyberpunk_lore.txt", "r") as f:
    dataset = f.read()

# Tokenize the dataset
input_ids = tokenizer.batch_encode_plus(dataset, return_tensors="pt")["input_ids"]

# Set up training arguments
training_args = TrainingArguments(
    output_dir='./results',
    overwrite_output_dir=True,
    num_train_epochs=5,
    per_device_train_batch_size=1,
    save_steps=10_000,
    save_total_limit=2,
)

# Create a Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=input_ids,
    eval_dataset=input_ids
)

# Fine-tune the model
trainer.train()

# Create the inference pipeline
pipe_flan = pipeline("text2text-generation", model=model)

@app.get("/infer_t5")
def t5(input):
    output = pipe_flan(input)
    return {"output": output[0]["generated_text"]}

app.mount("/", StaticFiles(directory="static", html=True), name="static")

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")