strongeryongchao commited on
Commit
15f25a0
·
verified ·
1 Parent(s): e494203

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -11
app.py CHANGED
@@ -16,8 +16,8 @@ def predict_single(text):
16
 
17
  result = classifier(text)[0]
18
  return {
19
- "negative (stars 1, 2 and 3)": f"{1 - result['score']:.4f}" if result['label'] == 'positive' else f"{result['score']:.4f}",
20
- "positive (stars 4 and 5)": f"{result['score']:.4f}" if result['label'] == 'positive' else f"{1 - result['score']:.4f}"
21
  }
22
 
23
  def process_batch(file):
@@ -33,8 +33,8 @@ def process_batch(file):
33
  pred = classifier(text)[0]
34
  results.append({
35
  "文本": text,
36
- "negative (stars 1, 2 and 3)": f"{1 - pred['score']:.4f}" if pred['label'] == 'positive' else f"{pred['score']:.4f}",
37
- "positive (stars 4 and 5)": f"{pred['score']:.4f}" if pred['label'] == 'positive' else f"{1 - pred['score']:.4f}"
38
  })
39
 
40
  df = pd.DataFrame(results)
@@ -46,16 +46,24 @@ def process_batch(file):
46
 
47
  # =============== 界面布局 ===============
48
  with gr.Blocks(title="基于RoBERTa模型的中文情感分析系统", css="""
49
- .gradio-container {max-width: 900px}
50
- .df-table {width: 100%}
51
- """) as demo:
 
 
 
 
 
 
 
 
52
  # 标题和说明
53
  gr.Markdown("""
54
  # 基于RoBERTa模型的中文情感分析系统
55
- 本系统使用RoBERTa中文情感分类模型,实现积极与消极情绪的二分类分析
56
  **标签说明**:
57
  positive:积极情绪(相当于评分4星和5星)
58
- negative:消极情绪(相当于评分1星和2星)
59
  """)
60
 
61
  # ===== 单句分析标签页 =====
@@ -114,9 +122,9 @@ with gr.Blocks(title="基于RoBERTa模型的中文情感分析系统", css="""
114
  outputs=download_btn
115
  )
116
 
117
- # 页脚
118
  gr.Markdown("---")
119
- gr.Markdown("燕山大学文法学院 姜永超,联系方式: [email protected]")
120
 
121
  # 启动应用
122
  demo.launch()
 
16
 
17
  result = classifier(text)[0]
18
  return {
19
+ "negative (stars 1, 2 and 3)": f"{1 - result['score']:.6f}" if result['label'] == 'positive' else f"{result['score']:.6f}",
20
+ "positive (stars 4 and 5)": f"{result['score']:.6f}" if result['label'] == 'positive' else f"{1 - result['score']:.6f}"
21
  }
22
 
23
  def process_batch(file):
 
33
  pred = classifier(text)[0]
34
  results.append({
35
  "文本": text,
36
+ "negative (stars 1, 2 and 3)": f"{1 - pred['score']:.6f}" if pred['label'] == 'positive' else f"{pred['score']:.6f}",
37
+ "positive (stars 4 and 5)": f"{pred['score']:.6f}" if pred['label'] == 'positive' else f"{1 - pred['score']:.6f}"
38
  })
39
 
40
  df = pd.DataFrame(results)
 
46
 
47
  # =============== 界面布局 ===============
48
  with gr.Blocks(title="基于RoBERTa模型的中文情感分析系统", css="""
49
+ .gradio-container {max-width: 900px;
50
+ margin:0 auto !important;
51
+ padding:20px;
52
+ }
53
+ .df-table {width: 100%;
54
+ }
55
+ hi, .markdown-text{
56
+ text-align:center !important;
57
+ }
58
+ """
59
+ ) as demo:
60
  # 标题和说明
61
  gr.Markdown("""
62
  # 基于RoBERTa模型的中文情感分析系统
63
+ 本项目使用RoBERTa中文情感分类模型,实现积极与消极情绪的二分类分析
64
  **标签说明**:
65
  positive:积极情绪(相当于评分4星和5星)
66
+ negative:消极情绪(相当于评分1星、2星和3星)
67
  """)
68
 
69
  # ===== 单句分析标签页 =====
 
122
  outputs=download_btn
123
  )
124
 
125
+ # 页脚(居中)
126
  gr.Markdown("---")
127
+ gr.Markdown("燕山大学文法学院 姜,联系方式: [email protected]")
128
 
129
  # 启动应用
130
  demo.launch()