Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
import pandas as pd
|
6 |
+
import uuid
|
7 |
+
import os
|
8 |
+
|
9 |
+
# 初始化 Flask(仅用于API)
|
10 |
+
flask_app = Flask(__name__)
|
11 |
+
os.makedirs("static", exist_ok=True)
|
12 |
+
|
13 |
+
# 直接使用 Hugging Face 模型(无需本地存储)
|
14 |
+
model_name = "uer/roberta-base-finetuned-jd-binary-chinese" # 使用Hub上的模型
|
15 |
+
classifier = pipeline("text-classification", model=model_name)
|
16 |
+
|
17 |
+
@flask_app.route("/api/predict", methods=["POST"])
|
18 |
+
def api_predict():
|
19 |
+
text = request.json.get("text", "")
|
20 |
+
result = classifier(text)
|
21 |
+
return jsonify(result)
|
22 |
+
|
23 |
+
# Gradio 界面
|
24 |
+
with gr.Blocks(title="情感分析系统") as demo:
|
25 |
+
with gr.Tab("单句分析"):
|
26 |
+
input_text = gr.Textbox(label="输入文本")
|
27 |
+
analyze_btn = gr.Button("分析")
|
28 |
+
output_label = gr.Label(label="结果")
|
29 |
+
|
30 |
+
def predict(text):
|
31 |
+
result = classifier(text)[0]
|
32 |
+
return {result["label"]: result["score"]}
|
33 |
+
|
34 |
+
analyze_btn.click(
|
35 |
+
fn=predict,
|
36 |
+
inputs=input_text,
|
37 |
+
outputs=output_label
|
38 |
+
)
|
39 |
+
|
40 |
+
with gr.Tab("批量分析"):
|
41 |
+
file_input = gr.File(label="上传TXT文件")
|
42 |
+
batch_output = gr.Dataframe(headers=["文本", "标签", "置信度"])
|
43 |
+
process_btn = gr.Button("处理文件")
|
44 |
+
|
45 |
+
def process_file(file):
|
46 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
47 |
+
texts = [line.strip() for line in f if line.strip()]
|
48 |
+
results = []
|
49 |
+
for text in texts:
|
50 |
+
pred = classifier(text)[0]
|
51 |
+
results.append([text, pred["label"], f"{pred['score']:.4f}"])
|
52 |
+
return pd.DataFrame(results, columns=["文本", "标签", "置信度"])
|
53 |
+
|
54 |
+
process_btn.click(
|
55 |
+
fn=process_file,
|
56 |
+
inputs=file_input,
|
57 |
+
outputs=batch_output
|
58 |
+
)
|
59 |
+
|
60 |
+
# 启动 Flask 线程(仅用于API)
|
61 |
+
import threading
|
62 |
+
threading.Thread(
|
63 |
+
target=flask_app.run,
|
64 |
+
kwargs={"port": 8000, "host": "0.0.0.0"}
|
65 |
+
).start()
|
66 |
+
|
67 |
+
# 启动 Gradio
|
68 |
+
demo.launch(server_port=7860)
|