Spaces:
Runtime error
Runtime error
Commit
·
a18641b
1
Parent(s):
4f3ae89
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def image_classifier(inp):
|
4 |
-
return {'cat': 0.3, 'dog': 0.7}
|
5 |
|
6 |
-
|
7 |
-
demo.launch()
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import traceback
|
10 |
+
from itertools import chain
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
|
14 |
import gradio as gr
|
15 |
+
import librosa
|
16 |
+
import numpy as np
|
17 |
+
import soundfile
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from compress_model import removeOptimizer
|
21 |
+
from edgetts.tts_voices import SUPPORTED_LANGUAGES
|
22 |
+
from inference.infer_tool import Svc
|
23 |
+
from utils import mix_model
|
24 |
+
|
25 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
26 |
+
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
27 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
28 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
29 |
+
logging.getLogger('multipart').setLevel(logging.WARNING)
|
30 |
+
|
31 |
+
model = None
|
32 |
+
spk = None
|
33 |
+
debug = False
|
34 |
+
|
35 |
+
local_model_root = './trained'
|
36 |
+
|
37 |
+
cuda = {}
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
for i in range(torch.cuda.device_count()):
|
40 |
+
device_name = torch.cuda.get_device_properties(i).name
|
41 |
+
cuda[f"CUDA:{i} {device_name}"] = f"cuda:{i}"
|
42 |
+
|
43 |
+
def upload_mix_append_file(files,sfiles):
|
44 |
+
try:
|
45 |
+
if(sfiles is None):
|
46 |
+
file_paths = [file.name for file in files]
|
47 |
+
else:
|
48 |
+
file_paths = [file.name for file in chain(files,sfiles)]
|
49 |
+
p = {file:100 for file in file_paths}
|
50 |
+
return file_paths,mix_model_output1.update(value=json.dumps(p,indent=2))
|
51 |
+
except Exception as e:
|
52 |
+
if debug:
|
53 |
+
traceback.print_exc()
|
54 |
+
raise gr.Error(e)
|
55 |
+
|
56 |
+
def mix_submit_click(js,mode):
|
57 |
+
try:
|
58 |
+
assert js.lstrip()!=""
|
59 |
+
modes = {"凸组合":0, "线性组合":1}
|
60 |
+
mode = modes[mode]
|
61 |
+
data = json.loads(js)
|
62 |
+
data = list(data.items())
|
63 |
+
model_path,mix_rate = zip(*data)
|
64 |
+
path = mix_model(model_path,mix_rate,mode)
|
65 |
+
return f"成功,文件被保存在了{path}"
|
66 |
+
except Exception as e:
|
67 |
+
if debug:
|
68 |
+
traceback.print_exc()
|
69 |
+
raise gr.Error(e)
|
70 |
+
|
71 |
+
def updata_mix_info(files):
|
72 |
+
try:
|
73 |
+
if files is None :
|
74 |
+
return mix_model_output1.update(value="")
|
75 |
+
p = {file.name:100 for file in files}
|
76 |
+
return mix_model_output1.update(value=json.dumps(p,indent=2))
|
77 |
+
except Exception as e:
|
78 |
+
if debug:
|
79 |
+
traceback.print_exc()
|
80 |
+
raise gr.Error(e)
|
81 |
+
|
82 |
+
def modelAnalysis(model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix,local_model_enabled,local_model_selection):
|
83 |
+
global model
|
84 |
+
try:
|
85 |
+
device = cuda[device] if "CUDA" in device else device
|
86 |
+
cluster_filepath = os.path.split(cluster_model_path.name) if cluster_model_path is not None else "no_cluster"
|
87 |
+
# get model and config path
|
88 |
+
if (local_model_enabled):
|
89 |
+
# local path
|
90 |
+
model_path = glob.glob(os.path.join(local_model_selection, '*.pth'))[0]
|
91 |
+
config_path = glob.glob(os.path.join(local_model_selection, '*.json'))[0]
|
92 |
+
else:
|
93 |
+
# upload from webpage
|
94 |
+
model_path = model_path.name
|
95 |
+
config_path = config_path.name
|
96 |
+
fr = ".pkl" in cluster_filepath[1]
|
97 |
+
model = Svc(model_path,
|
98 |
+
config_path,
|
99 |
+
device=device if device != "Auto" else None,
|
100 |
+
cluster_model_path = cluster_model_path.name if cluster_model_path is not None else "",
|
101 |
+
nsf_hifigan_enhance=enhance,
|
102 |
+
diffusion_model_path = diff_model_path.name if diff_model_path is not None else "",
|
103 |
+
diffusion_config_path = diff_config_path.name if diff_config_path is not None else "",
|
104 |
+
shallow_diffusion = True if diff_model_path is not None else False,
|
105 |
+
only_diffusion = only_diffusion,
|
106 |
+
spk_mix_enable = use_spk_mix,
|
107 |
+
feature_retrieval = fr
|
108 |
+
)
|
109 |
+
spks = list(model.spk2id.keys())
|
110 |
+
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev)
|
111 |
+
msg = f"成功加载模型到设备{device_name}上\n"
|
112 |
+
if cluster_model_path is None:
|
113 |
+
msg += "未加载聚类模型或特征检索模型\n"
|
114 |
+
elif fr:
|
115 |
+
msg += f"特征检索模型{cluster_filepath[1]}加载成功\n"
|
116 |
+
else:
|
117 |
+
msg += f"聚类模型{cluster_filepath[1]}加载成功\n"
|
118 |
+
if diff_model_path is None:
|
119 |
+
msg += "未加载扩散模型\n"
|
120 |
+
else:
|
121 |
+
msg += f"扩散模型{diff_model_path.name}加载成功\n"
|
122 |
+
msg += "当前模型的可用音色:\n"
|
123 |
+
for i in spks:
|
124 |
+
msg += i + " "
|
125 |
+
return sid.update(choices = spks,value=spks[0]), msg
|
126 |
+
except Exception as e:
|
127 |
+
if debug:
|
128 |
+
traceback.print_exc()
|
129 |
+
raise gr.Error(e)
|
130 |
+
|
131 |
+
|
132 |
+
def modelUnload():
|
133 |
+
global model
|
134 |
+
if model is None:
|
135 |
+
return sid.update(choices = [],value=""),"没有模型需要卸载!"
|
136 |
+
else:
|
137 |
+
model.unload_model()
|
138 |
+
model = None
|
139 |
+
torch.cuda.empty_cache()
|
140 |
+
return sid.update(choices = [],value=""),"模型卸载完毕!"
|
141 |
+
|
142 |
+
def vc_infer(output_format, sid, audio_path, truncated_basename, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold, k_step, use_spk_mix, second_encoding, loudness_envelope_adjustment):
|
143 |
+
global model
|
144 |
+
_audio = model.slice_inference(
|
145 |
+
audio_path,
|
146 |
+
sid,
|
147 |
+
vc_transform,
|
148 |
+
slice_db,
|
149 |
+
cluster_ratio,
|
150 |
+
auto_f0,
|
151 |
+
noise_scale,
|
152 |
+
pad_seconds,
|
153 |
+
cl_num,
|
154 |
+
lg_num,
|
155 |
+
lgr_num,
|
156 |
+
f0_predictor,
|
157 |
+
enhancer_adaptive_key,
|
158 |
+
cr_threshold,
|
159 |
+
k_step,
|
160 |
+
use_spk_mix,
|
161 |
+
second_encoding,
|
162 |
+
loudness_envelope_adjustment
|
163 |
+
)
|
164 |
+
model.clear_empty()
|
165 |
+
#构建保存文件的路径,并保存到results文件夹内
|
166 |
+
str(int(time.time()))
|
167 |
+
if not os.path.exists("results"):
|
168 |
+
os.makedirs("results")
|
169 |
+
key = "auto" if auto_f0 else f"{int(vc_transform)}key"
|
170 |
+
cluster = "_" if cluster_ratio == 0 else f"_{cluster_ratio}_"
|
171 |
+
isdiffusion = "sovits"
|
172 |
+
if model.shallow_diffusion:
|
173 |
+
isdiffusion = "sovdiff"
|
174 |
+
|
175 |
+
if model.only_diffusion:
|
176 |
+
isdiffusion = "diff"
|
177 |
+
|
178 |
+
output_file_name = 'result_'+truncated_basename+f'_{sid}_{key}{cluster}{isdiffusion}.{output_format}'
|
179 |
+
output_file = os.path.join("results", output_file_name)
|
180 |
+
soundfile.write(output_file, _audio, model.target_sample, format=output_format)
|
181 |
+
return output_file
|
182 |
+
|
183 |
+
def vc_fn(sid, input_audio, output_format, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment):
|
184 |
+
global model
|
185 |
+
try:
|
186 |
+
if input_audio is None:
|
187 |
+
return "You need to upload an audio", None
|
188 |
+
if model is None:
|
189 |
+
return "You need to upload an model", None
|
190 |
+
if getattr(model, 'cluster_model', None) is None and model.feature_retrieval is False:
|
191 |
+
if cluster_ratio != 0:
|
192 |
+
return "You need to upload an cluster model or feature retrieval model before assigning cluster ratio!", None
|
193 |
+
#print(input_audio)
|
194 |
+
audio, sampling_rate = soundfile.read(input_audio)
|
195 |
+
#print(audio.shape,sampling_rate)
|
196 |
+
if np.issubdtype(audio.dtype, np.integer):
|
197 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
198 |
+
#print(audio.dtype)
|
199 |
+
if len(audio.shape) > 1:
|
200 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
201 |
+
# 未知原因Gradio上传的filepath会有一个奇怪的固定后缀,这里去掉
|
202 |
+
truncated_basename = Path(input_audio).stem[:-6]
|
203 |
+
processed_audio = os.path.join("raw", f"{truncated_basename}.wav")
|
204 |
+
soundfile.write(processed_audio, audio, sampling_rate, format="wav")
|
205 |
+
output_file = vc_infer(output_format, sid, processed_audio, truncated_basename, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold, k_step, use_spk_mix, second_encoding, loudness_envelope_adjustment)
|
206 |
+
|
207 |
+
return "Success", output_file
|
208 |
+
except Exception as e:
|
209 |
+
if debug:
|
210 |
+
traceback.print_exc()
|
211 |
+
raise gr.Error(e)
|
212 |
+
|
213 |
+
def text_clear(text):
|
214 |
+
return re.sub(r"[\n\,\(\) ]", "", text)
|
215 |
+
|
216 |
+
def vc_fn2(_text, _lang, _gender, _rate, _volume, sid, output_format, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold, k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment):
|
217 |
+
global model
|
218 |
+
try:
|
219 |
+
if model is None:
|
220 |
+
return "You need to upload an model", None
|
221 |
+
if getattr(model, 'cluster_model', None) is None and model.feature_retrieval is False:
|
222 |
+
if cluster_ratio != 0:
|
223 |
+
return "You need to upload an cluster model or feature retrieval model before assigning cluster ratio!", None
|
224 |
+
_rate = f"+{int(_rate*100)}%" if _rate >= 0 else f"{int(_rate*100)}%"
|
225 |
+
_volume = f"+{int(_volume*100)}%" if _volume >= 0 else f"{int(_volume*100)}%"
|
226 |
+
if _lang == "Auto":
|
227 |
+
_gender = "Male" if _gender == "男" else "Female"
|
228 |
+
subprocess.run([sys.executable, "edgetts/tts.py", _text, _lang, _rate, _volume, _gender])
|
229 |
+
else:
|
230 |
+
subprocess.run([sys.executable, "edgetts/tts.py", _text, _lang, _rate, _volume])
|
231 |
+
target_sr = 44100
|
232 |
+
y, sr = librosa.load("tts.wav")
|
233 |
+
resampled_y = librosa.resample(y, orig_sr=sr, target_sr=target_sr)
|
234 |
+
soundfile.write("tts.wav", resampled_y, target_sr, subtype = "PCM_16")
|
235 |
+
input_audio = "tts.wav"
|
236 |
+
#audio, _ = soundfile.read(input_audio)
|
237 |
+
output_file_path = vc_infer(output_format, sid, input_audio, "tts", vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold, k_step, use_spk_mix, second_encoding, loudness_envelope_adjustment)
|
238 |
+
os.remove("tts.wav")
|
239 |
+
return "Success", output_file_path
|
240 |
+
except Exception as e:
|
241 |
+
if debug: traceback.print_exc() # noqa: E701
|
242 |
+
raise gr.Error(e)
|
243 |
+
|
244 |
+
def model_compression(_model):
|
245 |
+
if _model == "":
|
246 |
+
return "请先选择要压缩的模型"
|
247 |
+
else:
|
248 |
+
model_path = os.path.split(_model.name)
|
249 |
+
filename, extension = os.path.splitext(model_path[1])
|
250 |
+
output_model_name = f"{filename}_compressed{extension}"
|
251 |
+
output_path = os.path.join(os.getcwd(), output_model_name)
|
252 |
+
removeOptimizer(_model.name, output_path)
|
253 |
+
return f"模型已成功被保存在了{output_path}"
|
254 |
+
|
255 |
+
def scan_local_models():
|
256 |
+
res = []
|
257 |
+
candidates = glob.glob(os.path.join(local_model_root, '**', '*.json'), recursive=True)
|
258 |
+
candidates = set([os.path.dirname(c) for c in candidates])
|
259 |
+
for candidate in candidates:
|
260 |
+
jsons = glob.glob(os.path.join(candidate, '*.json'))
|
261 |
+
pths = glob.glob(os.path.join(candidate, '*.pth'))
|
262 |
+
if (len(jsons) == 1 and len(pths) == 1):
|
263 |
+
# must contain exactly one json and one pth file
|
264 |
+
res.append(candidate)
|
265 |
+
return res
|
266 |
+
|
267 |
+
def local_model_refresh_fn():
|
268 |
+
choices = scan_local_models()
|
269 |
+
return gr.Dropdown.update(choices=choices)
|
270 |
+
|
271 |
+
def debug_change():
|
272 |
+
global debug
|
273 |
+
debug = debug_button.value
|
274 |
+
|
275 |
+
with gr.Blocks(
|
276 |
+
theme=gr.themes.Base(
|
277 |
+
primary_hue = gr.themes.colors.green,
|
278 |
+
font=["Source Sans Pro", "Arial", "sans-serif"],
|
279 |
+
font_mono=['JetBrains mono', "Consolas", 'Courier New']
|
280 |
+
),
|
281 |
+
) as app:
|
282 |
+
with gr.Tabs():
|
283 |
+
with gr.TabItem("推理"):
|
284 |
+
gr.Markdown(value="""
|
285 |
+
So-vits-svc 4.0 推理 webui
|
286 |
+
""")
|
287 |
+
with gr.Row(variant="panel"):
|
288 |
+
with gr.Column():
|
289 |
+
gr.Markdown(value="""
|
290 |
+
<font size=2> 模型设置</font>
|
291 |
+
""")
|
292 |
+
with gr.Tabs():
|
293 |
+
# invisible checkbox that tracks tab status
|
294 |
+
local_model_enabled = gr.Checkbox(value=False, visible=False)
|
295 |
+
with gr.TabItem('上传') as local_model_tab_upload:
|
296 |
+
with gr.Row():
|
297 |
+
model_path = gr.File(label="选择模型文件")
|
298 |
+
config_path = gr.File(label="选择配置文件")
|
299 |
+
with gr.TabItem('本地') as local_model_tab_local:
|
300 |
+
gr.Markdown(f'模型应当放置于{local_model_root}文件夹下')
|
301 |
+
local_model_refresh_btn = gr.Button('刷新本地模型列表')
|
302 |
+
local_model_selection = gr.Dropdown(label='选择模型文件夹', choices=[], interactive=True)
|
303 |
+
with gr.Row():
|
304 |
+
diff_model_path = gr.File(label="选择扩散模型文件")
|
305 |
+
diff_config_path = gr.File(label="选择扩散模型配置文件")
|
306 |
+
cluster_model_path = gr.File(label="选择聚类模型或特征检索文件(没有可以不选)")
|
307 |
+
device = gr.Dropdown(label="推理设备,默认为自动选择CPU和GPU", choices=["Auto",*cuda.keys(),"cpu"], value="Auto")
|
308 |
+
enhance = gr.Checkbox(label="是否使用NSF_HIFIGAN增强,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭", value=False)
|
309 |
+
only_diffusion = gr.Checkbox(label="是否使用全扩散推理,开启后将不使用So-VITS模型,仅使用扩散模型进行完整扩散推理,默认关闭", value=False)
|
310 |
+
with gr.Column():
|
311 |
+
gr.Markdown(value="""
|
312 |
+
<font size=3>左侧文件全部选择完毕后(全部文件模块显示download),点击“加载模型”进行解析:</font>
|
313 |
+
""")
|
314 |
+
model_load_button = gr.Button(value="加载模型", variant="primary")
|
315 |
+
model_unload_button = gr.Button(value="卸载模型", variant="primary")
|
316 |
+
sid = gr.Dropdown(label="音色(说话人)")
|
317 |
+
sid_output = gr.Textbox(label="Output Message")
|
318 |
+
|
319 |
+
|
320 |
+
with gr.Row(variant="panel"):
|
321 |
+
with gr.Column():
|
322 |
+
gr.Markdown(value="""
|
323 |
+
<font size=2> 推理设置</font>
|
324 |
+
""")
|
325 |
+
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False)
|
326 |
+
f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,rmvpe,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=["pm","dio","harvest","crepe","rmvpe"], value="pm")
|
327 |
+
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
328 |
+
cluster_ratio = gr.Number(label="聚类模型/特征检索混合比例,0-1之间,0即不启用聚类/特征检索。使用聚类/特征检索能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
329 |
+
slice_db = gr.Number(label="切片阈值", value=-40)
|
330 |
+
output_format = gr.Radio(label="音频输出格式", choices=["wav", "flac", "mp3"], value = "wav")
|
331 |
+
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
332 |
+
k_step = gr.Slider(label="浅扩散步数,只有使用了扩散模型才有效,步数越大越接近扩散模型的结果", value=100, minimum = 1, maximum = 1000)
|
333 |
+
with gr.Column():
|
334 |
+
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
335 |
+
cl_num = gr.Number(label="音频自动切片,0为不切片,单位为秒(s)", value=0)
|
336 |
+
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
337 |
+
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75)
|
338 |
+
enhancer_adaptive_key = gr.Number(label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0)
|
339 |
+
cr_threshold = gr.Number(label="F0过滤阈值,只有启动crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音", value=0.05)
|
340 |
+
loudness_envelope_adjustment = gr.Number(label="输入源响度包络替换输出响度包络融合比例,越靠近1越使用输出响度包络", value = 0)
|
341 |
+
second_encoding = gr.Checkbox(label = "二次编码,浅扩散前会对原始音频进行二次编码,玄学选项,效果时好时差,默认关闭", value=False)
|
342 |
+
use_spk_mix = gr.Checkbox(label = "动态声线融合", value = False, interactive = False)
|
343 |
+
with gr.Tabs():
|
344 |
+
with gr.TabItem("音频转音频"):
|
345 |
+
vc_input3 = gr.Audio(label="选择音频", type="filepath")
|
346 |
+
vc_submit = gr.Button("音频转换", variant="primary")
|
347 |
+
with gr.TabItem("文字转音频"):
|
348 |
+
text2tts=gr.Textbox(label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪")
|
349 |
+
with gr.Row():
|
350 |
+
tts_gender = gr.Radio(label = "说话人性别", choices = ["男","女"], value = "男")
|
351 |
+
tts_lang = gr.Dropdown(label = "选择语言,Auto为根据输入文字自动识别", choices=SUPPORTED_LANGUAGES, value = "Auto")
|
352 |
+
tts_rate = gr.Slider(label = "TTS语音变速(倍速相对值)", minimum = -1, maximum = 3, value = 0, step = 0.1)
|
353 |
+
tts_volume = gr.Slider(label = "TTS语音音量(相对值)", minimum = -1, maximum = 1.5, value = 0, step = 0.1)
|
354 |
+
vc_submit2 = gr.Button("文字转换", variant="primary")
|
355 |
+
with gr.Row():
|
356 |
+
with gr.Column():
|
357 |
+
vc_output1 = gr.Textbox(label="Output Message")
|
358 |
+
with gr.Column():
|
359 |
+
vc_output2 = gr.Audio(label="Output Audio", interactive=False)
|
360 |
+
|
361 |
+
with gr.TabItem("小工具/实验室特性"):
|
362 |
+
gr.Markdown(value="""
|
363 |
+
<font size=2> So-vits-svc 4.0 小工具/实验室特性</font>
|
364 |
+
""")
|
365 |
+
with gr.Tabs():
|
366 |
+
with gr.TabItem("静态声线融合"):
|
367 |
+
gr.Markdown(value="""
|
368 |
+
<font size=2> 介绍:该功能可以将多个声音模型合成为一个声音模型(多个模型参数的凸组合或线性组合),从而制造出现实中不存在的声线
|
369 |
+
注意:
|
370 |
+
1.该功能仅支持单说话人的模型
|
371 |
+
2.如果强行使用多说话人模型,需要保证多个模型的说话人数量相同,这样可以混合同一个SpaekerID下的声音
|
372 |
+
3.保证所有待混合模型的config.json中的model字段是相同的
|
373 |
+
4.输出的混合模型可以使用待合成模型的任意一个config.json,但聚类模型将不能使用
|
374 |
+
5.批量上传模型��时候最好把模型放到一个文件夹选中后一起上传
|
375 |
+
6.混合比例调整建议大小在0-100之间,也可以调为其他数字,但在线性组合模式下会出现未知的效果
|
376 |
+
7.混合完毕后,文件将会保存在项目根目录中,文件名为output.pth
|
377 |
+
8.凸组合模式会将混合比例执行Softmax使混合比例相加为1,而线性组合模式不会
|
378 |
+
</font>
|
379 |
+
""")
|
380 |
+
mix_model_path = gr.Files(label="选择需要混合模型文件")
|
381 |
+
mix_model_upload_button = gr.UploadButton("选择/追加需要混合模型文件", file_count="multiple")
|
382 |
+
mix_model_output1 = gr.Textbox(
|
383 |
+
label="混合比例调整,单位/%",
|
384 |
+
interactive = True
|
385 |
+
)
|
386 |
+
mix_mode = gr.Radio(choices=["凸组合", "线性组合"], label="融合模式",value="凸组合",interactive = True)
|
387 |
+
mix_submit = gr.Button("声线融合启动", variant="primary")
|
388 |
+
mix_model_output2 = gr.Textbox(
|
389 |
+
label="Output Message"
|
390 |
+
)
|
391 |
+
mix_model_path.change(updata_mix_info,[mix_model_path],[mix_model_output1])
|
392 |
+
mix_model_upload_button.upload(upload_mix_append_file, [mix_model_upload_button,mix_model_path], [mix_model_path,mix_model_output1])
|
393 |
+
mix_submit.click(mix_submit_click, [mix_model_output1,mix_mode], [mix_model_output2])
|
394 |
+
|
395 |
+
with gr.TabItem("模型压缩工具"):
|
396 |
+
gr.Markdown(value="""
|
397 |
+
该工具可以实现对模型的体积压缩,在**不影响模型推理功能**的情况下,将原本约600M的So-VITS模型压缩至约200M, 大大减少了硬盘的压力。
|
398 |
+
**注意:压缩后的模型将无法继续训练,请在确认封炉后再压缩。**
|
399 |
+
""")
|
400 |
+
model_to_compress = gr.File(label="模型上传")
|
401 |
+
compress_model_btn = gr.Button("压缩模型", variant="primary")
|
402 |
+
compress_model_output = gr.Textbox(label="输出信息", value="")
|
403 |
+
|
404 |
+
compress_model_btn.click(model_compression, [model_to_compress], [compress_model_output])
|
405 |
+
|
406 |
+
|
407 |
+
with gr.Tabs():
|
408 |
+
with gr.Row(variant="panel"):
|
409 |
+
with gr.Column():
|
410 |
+
gr.Markdown(value="""
|
411 |
+
<font size=2> WebUI设置</font>
|
412 |
+
""")
|
413 |
+
debug_button = gr.Checkbox(label="Debug模式,如果向社区反馈BUG需要打开,打开后控制台可以显示具体错误提示", value=debug)
|
414 |
+
# refresh local model list
|
415 |
+
local_model_refresh_btn.click(local_model_refresh_fn, outputs=local_model_selection)
|
416 |
+
# set local enabled/disabled on tab switch
|
417 |
+
local_model_tab_upload.select(lambda: False, outputs=local_model_enabled)
|
418 |
+
local_model_tab_local.select(lambda: True, outputs=local_model_enabled)
|
419 |
+
|
420 |
+
vc_submit.click(vc_fn, [sid, vc_input3, output_format, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2])
|
421 |
+
vc_submit2.click(vc_fn2, [text2tts, tts_lang, tts_gender, tts_rate, tts_volume, sid, output_format, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2])
|
422 |
+
|
423 |
+
debug_button.change(debug_change,[],[])
|
424 |
+
model_load_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix,local_model_enabled,local_model_selection],[sid,sid_output])
|
425 |
+
model_unload_button.click(modelUnload,[],[sid,sid_output])
|
426 |
+
os.system("start http://127.0.0.1:7860")
|
427 |
+
app.launch()
|
428 |
|
|
|
|
|
429 |
|
430 |
+
|
|