suayptalha's picture
Update app.py
dceb63e verified
raw
history blame
1.76 kB
import gradio as gr
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
moondream_client = Client("vikhyatk/moondream2")
llama_client = InferenceClient("Qwen/QwQ-32B-Preview")
history = []
def describe_image(image, user_message):
global history
result = moondream_client.predict(
img=handle_file(image),
prompt="Describe this image.",
api_name="/answer_question"
)
description = result # Moondream2'nin cevabını alıyoruz
history.append(f"User: {user_message}")
history.append(f"Assistant: {description}")
full_conversation = "\n".join(history)
llama_result = llama_client.chat_completion(
messages=[{"role": "user", "content": full_conversation}],
max_tokens=512,
temperature=0.7,
top_p=0.95
)
return description + "\n\nAssistant: " + llama_result['choices'][0]['message']['content']
def chat_or_image(image, user_message):
global history
if image:
return describe_image(image, user_message)
else:
history.append(f"User: {user_message}")
full_conversation = "\n".join(history)
llama_result = llama_client.chat_completion(
messages=[{"role": "user", "content": full_conversation}],
max_tokens=512,
temperature=0.7,
top_p=0.95
)
return llama_result['choices'][0]['message']['content']
demo = gr.Interface(
fn=chat_or_image,
inputs=[
gr.Image(type="filepath", label="Resim Yükle (isteğe bağlı)"),
gr.Textbox(label="Soru Sor ya da Konuş", placeholder="Soru sor...", lines=2)
],
outputs="text",
)
if __name__ == "__main__":
demo.launch(show_error=True)