Spaces:
Running
Running
import argparse | |
import os | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from matplotlib.ticker import MultipleLocator | |
from mmcv.ops import nms | |
from mmdet.evaluation import bbox_overlaps | |
from mmdet.utils import replace_cfg_vals, update_data_root | |
from mmengine import Config, DictAction | |
from mmengine.fileio import load | |
from mmengine.registry import init_default_scope | |
from mmengine.utils import ProgressBar | |
from mmyolo.registry import DATASETS | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate confusion matrix from detection results') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument( | |
'prediction_path', help='prediction path where test .pkl result') | |
parser.add_argument( | |
'save_dir', help='directory where confusion matrix will be saved') | |
parser.add_argument( | |
'--show', action='store_true', help='show confusion matrix') | |
parser.add_argument( | |
'--color-theme', | |
default='plasma', | |
help='theme of the matrix color map') | |
parser.add_argument( | |
'--score-thr', | |
type=float, | |
default=0.3, | |
help='score threshold to filter detection bboxes') | |
parser.add_argument( | |
'--tp-iou-thr', | |
type=float, | |
default=0.5, | |
help='IoU threshold to be considered as matched') | |
parser.add_argument( | |
'--nms-iou-thr', | |
type=float, | |
default=None, | |
help='nms IoU threshold, only applied when users want to change the' | |
'nms IoU threshold.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
def calculate_confusion_matrix(dataset, | |
results, | |
score_thr=0, | |
nms_iou_thr=None, | |
tp_iou_thr=0.5): | |
"""Calculate the confusion matrix. | |
Args: | |
dataset (Dataset): Test or val dataset. | |
results (list[ndarray]): A list of detection results in each image. | |
score_thr (float|optional): Score threshold to filter bboxes. | |
Default: 0. | |
nms_iou_thr (float|optional): nms IoU threshold, the detection results | |
have done nms in the detector, only applied when users want to | |
change the nms IoU threshold. Default: None. | |
tp_iou_thr (float|optional): IoU threshold to be considered as matched. | |
Default: 0.5. | |
""" | |
num_classes = len(dataset.metainfo['classes']) | |
confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1]) | |
assert len(dataset) == len(results) | |
prog_bar = ProgressBar(len(results)) | |
for idx, per_img_res in enumerate(results): | |
res_bboxes = per_img_res['pred_instances'] | |
gts = dataset.get_data_info(idx)['instances'] | |
analyze_per_img_dets(confusion_matrix, gts, res_bboxes, score_thr, | |
tp_iou_thr, nms_iou_thr) | |
prog_bar.update() | |
return confusion_matrix | |
def analyze_per_img_dets(confusion_matrix, | |
gts, | |
result, | |
score_thr=0, | |
tp_iou_thr=0.5, | |
nms_iou_thr=None): | |
"""Analyze detection results on each image. | |
Args: | |
confusion_matrix (ndarray): The confusion matrix, | |
has shape (num_classes + 1, num_classes + 1). | |
gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4). | |
gt_labels (ndarray): Ground truth labels, has shape (num_gt). | |
result (ndarray): Detection results, has shape | |
(num_classes, num_bboxes, 5). | |
score_thr (float): Score threshold to filter bboxes. | |
Default: 0. | |
tp_iou_thr (float): IoU threshold to be considered as matched. | |
Default: 0.5. | |
nms_iou_thr (float|optional): nms IoU threshold, the detection results | |
have done nms in the detector, only applied when users want to | |
change the nms IoU threshold. Default: None. | |
""" | |
true_positives = np.zeros(len(gts)) | |
gt_bboxes = [] | |
gt_labels = [] | |
for gt in gts: | |
gt_bboxes.append(gt['bbox']) | |
gt_labels.append(gt['bbox_label']) | |
gt_bboxes = np.array(gt_bboxes) | |
gt_labels = np.array(gt_labels) | |
unique_label = np.unique(result['labels'].numpy()) | |
for det_label in unique_label: | |
mask = (result['labels'] == det_label) | |
det_bboxes = result['bboxes'][mask].numpy() | |
det_scores = result['scores'][mask].numpy() | |
if nms_iou_thr: | |
det_bboxes, _ = nms( | |
det_bboxes, det_scores, nms_iou_thr, score_threshold=score_thr) | |
ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes) | |
for i, score in enumerate(det_scores): | |
det_match = 0 | |
if score >= score_thr: | |
for j, gt_label in enumerate(gt_labels): | |
if ious[i, j] >= tp_iou_thr: | |
det_match += 1 | |
if gt_label == det_label: | |
true_positives[j] += 1 # TP | |
confusion_matrix[gt_label, det_label] += 1 | |
if det_match == 0: # BG FP | |
confusion_matrix[-1, det_label] += 1 | |
for num_tp, gt_label in zip(true_positives, gt_labels): | |
if num_tp == 0: # FN | |
confusion_matrix[gt_label, -1] += 1 | |
def plot_confusion_matrix(confusion_matrix, | |
labels, | |
save_dir=None, | |
show=True, | |
title='Normalized Confusion Matrix', | |
color_theme='plasma'): | |
"""Draw confusion matrix with matplotlib. | |
Args: | |
confusion_matrix (ndarray): The confusion matrix. | |
labels (list[str]): List of class names. | |
save_dir (str|optional): If set, save the confusion matrix plot to the | |
given path. Default: None. | |
show (bool): Whether to show the plot. Default: True. | |
title (str): Title of the plot. Default: `Normalized Confusion Matrix`. | |
color_theme (str): Theme of the matrix color map. Default: `plasma`. | |
""" | |
# normalize the confusion matrix | |
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] | |
confusion_matrix = \ | |
confusion_matrix.astype(np.float32) / per_label_sums * 100 | |
num_classes = len(labels) | |
fig, ax = plt.subplots( | |
figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180) | |
cmap = plt.get_cmap(color_theme) | |
im = ax.imshow(confusion_matrix, cmap=cmap) | |
plt.colorbar(mappable=im, ax=ax) | |
title_font = {'weight': 'bold', 'size': 12} | |
ax.set_title(title, fontdict=title_font) | |
label_font = {'size': 10} | |
plt.ylabel('Ground Truth Label', fontdict=label_font) | |
plt.xlabel('Prediction Label', fontdict=label_font) | |
# draw locator | |
xmajor_locator = MultipleLocator(1) | |
xminor_locator = MultipleLocator(0.5) | |
ax.xaxis.set_major_locator(xmajor_locator) | |
ax.xaxis.set_minor_locator(xminor_locator) | |
ymajor_locator = MultipleLocator(1) | |
yminor_locator = MultipleLocator(0.5) | |
ax.yaxis.set_major_locator(ymajor_locator) | |
ax.yaxis.set_minor_locator(yminor_locator) | |
# draw grid | |
ax.grid(True, which='minor', linestyle='-') | |
# draw label | |
ax.set_xticks(np.arange(num_classes)) | |
ax.set_yticks(np.arange(num_classes)) | |
ax.set_xticklabels(labels) | |
ax.set_yticklabels(labels) | |
ax.tick_params( | |
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) | |
plt.setp( | |
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') | |
# draw confution matrix value | |
for i in range(num_classes): | |
for j in range(num_classes): | |
ax.text( | |
j, | |
i, | |
'{}%'.format( | |
int(confusion_matrix[ | |
i, | |
j]) if not np.isnan(confusion_matrix[i, j]) else -1), | |
ha='center', | |
va='center', | |
color='w', | |
size=7) | |
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1 | |
fig.tight_layout() | |
if save_dir is not None: | |
plt.savefig( | |
os.path.join(save_dir, 'confusion_matrix.png'), format='png') | |
if show: | |
plt.show() | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
# replace the ${key} with the value of cfg.key | |
cfg = replace_cfg_vals(cfg) | |
# update data root according to MMYOLO_DATASETS | |
update_data_root(cfg) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
init_default_scope(cfg.get('default_scope', 'mmyolo')) | |
results = load(args.prediction_path) | |
if not os.path.exists(args.save_dir): | |
os.makedirs(args.save_dir) | |
dataset = DATASETS.build(cfg.test_dataloader.dataset) | |
confusion_matrix = calculate_confusion_matrix(dataset, results, | |
args.score_thr, | |
args.nms_iou_thr, | |
args.tp_iou_thr) | |
plot_confusion_matrix( | |
confusion_matrix, | |
dataset.metainfo['classes'] + ('background', ), | |
save_dir=args.save_dir, | |
show=args.show, | |
color_theme=args.color_theme) | |
if __name__ == '__main__': | |
main() | |