Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import tempfile | |
from pathlib import Path | |
import torch | |
from mmdet.registry import MODELS | |
from mmengine.analysis import get_model_complexity_info | |
from mmengine.config import Config, DictAction | |
from mmengine.logging import MMLogger | |
from mmengine.model import revert_sync_batchnorm | |
from mmengine.registry import init_default_scope | |
from mmyolo.utils import switch_to_deploy | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Get a detector flops') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=[640, 640], | |
help='input image size') | |
parser.add_argument( | |
'--show-arch', | |
action='store_true', | |
help='whether return the statistics in the form of network layers') | |
parser.add_argument( | |
'--not-show-table', | |
action='store_true', | |
help='whether return the statistics in the form of table'), | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
return parser.parse_args() | |
def inference(args, logger): | |
config_name = Path(args.config) | |
if not config_name.exists(): | |
logger.error(f'{config_name} not found.') | |
cfg = Config.fromfile(args.config) | |
cfg.work_dir = tempfile.TemporaryDirectory().name | |
cfg.log_level = 'WARN' | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
init_default_scope(cfg.get('default_scope', 'mmyolo')) | |
if len(args.shape) == 1: | |
h = w = args.shape[0] | |
elif len(args.shape) == 2: | |
h, w = args.shape | |
else: | |
raise ValueError('invalid input shape') | |
# model | |
model = MODELS.build(cfg.model) | |
if torch.cuda.is_available(): | |
model.cuda() | |
model = revert_sync_batchnorm(model) | |
model.eval() | |
switch_to_deploy(model) | |
# input tensor | |
# automatically generate a input tensor with the given input_shape. | |
data_batch = {'inputs': [torch.rand(3, h, w)], 'batch_samples': [None]} | |
data = model.data_preprocessor(data_batch) | |
result = {'ori_shape': (h, w), 'pad_shape': data['inputs'].shape[-2:]} | |
outputs = get_model_complexity_info( | |
model, | |
input_shape=None, | |
inputs=data['inputs'], # the input tensor of the model | |
show_table=not args.not_show_table, # show the complexity table | |
show_arch=args.show_arch) # show the complexity arch | |
result['flops'] = outputs['flops_str'] | |
result['params'] = outputs['params_str'] | |
result['out_table'] = outputs['out_table'] | |
result['out_arch'] = outputs['out_arch'] | |
return result | |
def main(): | |
args = parse_args() | |
logger = MMLogger.get_instance(name='MMLogger') | |
result = inference(args, logger) | |
split_line = '=' * 30 | |
ori_shape = result['ori_shape'] | |
pad_shape = result['pad_shape'] | |
flops = result['flops'] | |
params = result['params'] | |
print(result['out_table']) # print related information by table | |
print(result['out_arch']) # print related information by network layers | |
if pad_shape != ori_shape: | |
print(f'{split_line}\nUse size divisor set input shape ' | |
f'from {ori_shape} to {pad_shape}') | |
print(f'{split_line}\n' | |
f'Input shape: {pad_shape}\nModel Flops: {flops}\n' | |
f'Model Parameters: {params}\n{split_line}') | |
print('!!!Please be cautious if you use the results in papers. ' | |
'You may need to check if all ops are supported and verify ' | |
'that the flops computation is correct.') | |
if __name__ == '__main__': | |
main() | |