HairCLIP / patch.e4e
Konstantin Mokhnatkin
Duplicate from Gradio-Blocks/HairCLIP
cb4af26
diff --git a/models/stylegan2/op/fused_act.py b/models/stylegan2/op/fused_act.py
index 973a84f..6854b97 100644
--- a/models/stylegan2/op/fused_act.py
+++ b/models/stylegan2/op/fused_act.py
@@ -2,17 +2,18 @@ import os
import torch
from torch import nn
+from torch.nn import functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load
-module_path = os.path.dirname(__file__)
-fused = load(
- 'fused',
- sources=[
- os.path.join(module_path, 'fused_bias_act.cpp'),
- os.path.join(module_path, 'fused_bias_act_kernel.cu'),
- ],
-)
+#module_path = os.path.dirname(__file__)
+#fused = load(
+# 'fused',
+# sources=[
+# os.path.join(module_path, 'fused_bias_act.cpp'),
+# os.path.join(module_path, 'fused_bias_act_kernel.cu'),
+# ],
+#)
class FusedLeakyReLUFunctionBackward(Function):
@@ -82,4 +83,18 @@ class FusedLeakyReLU(nn.Module):
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
- return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
+ if input.device.type == "cpu":
+ if bias is not None:
+ rest_dim = [1] * (input.ndim - bias.ndim - 1)
+ return (
+ F.leaky_relu(
+ input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
+ )
+ * scale
+ )
+
+ else:
+ return F.leaky_relu(input, negative_slope=0.2) * scale
+
+ else:
+ return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
diff --git a/models/stylegan2/op/upfirdn2d.py b/models/stylegan2/op/upfirdn2d.py
index 7bc5a1e..5465d1a 100644
--- a/models/stylegan2/op/upfirdn2d.py
+++ b/models/stylegan2/op/upfirdn2d.py
@@ -1,17 +1,18 @@
import os
import torch
+from torch.nn import functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load
-module_path = os.path.dirname(__file__)
-upfirdn2d_op = load(
- 'upfirdn2d',
- sources=[
- os.path.join(module_path, 'upfirdn2d.cpp'),
- os.path.join(module_path, 'upfirdn2d_kernel.cu'),
- ],
-)
+#module_path = os.path.dirname(__file__)
+#upfirdn2d_op = load(
+# 'upfirdn2d',
+# sources=[
+# os.path.join(module_path, 'upfirdn2d.cpp'),
+# os.path.join(module_path, 'upfirdn2d_kernel.cu'),
+# ],
+#)
class UpFirDn2dBackward(Function):
@@ -97,8 +98,8 @@ class UpFirDn2d(Function):
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
- out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
- out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
ctx.out_size = (out_h, out_w)
ctx.up = (up_x, up_y)
@@ -140,9 +141,13 @@ class UpFirDn2d(Function):
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
- out = UpFirDn2d.apply(
- input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
- )
+ if input.device.type == "cpu":
+ out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
+
+ else:
+ out = UpFirDn2d.apply(
+ input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
+ )
return out
@@ -150,6 +155,9 @@ def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
def upfirdn2d_native(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
+ _, channel, in_h, in_w = input.shape
+ input = input.reshape(-1, in_h, in_w, 1)
+
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
@@ -180,5 +188,9 @@ def upfirdn2d_native(
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
+ out = out[:, ::down_y, ::down_x, :]
+
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
- return out[:, ::down_y, ::down_x, :]
+ return out.view(-1, channel, out_h, out_w)