#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
from model import Model
DESCRIPTION = '''# [HairCLIP](https://github.com/wty-ustc/HairCLIP)
'''
def load_hairstyle_list() -> list[str]:
with open('HairCLIP/mapper/hairstyle_list.txt') as f:
lines = [line.strip() for line in f.readlines()]
lines = [line[:-10] for line in lines]
return lines
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def update_step2_components(choice: str) -> tuple[dict, dict]:
return (
gr.Dropdown.update(visible=choice in ['hairstyle', 'both']),
gr.Textbox.update(visible=choice in ['color', 'both']),
)
model = Model()
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Box():
gr.Markdown('## Step 1')
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image',
type='filepath')
with gr.Row():
preprocess_button = gr.Button('Preprocess')
with gr.Column():
aligned_face = gr.Image(label='Aligned Face',
type='pil',
interactive=False)
with gr.Column():
reconstructed_face = gr.Image(label='Reconstructed Face',
type='numpy')
latent = gr.Variable()
with gr.Row():
paths = sorted(pathlib.Path('images').glob('*.jpg'))
gr.Examples(examples=[[path.as_posix()] for path in paths],
inputs=input_image)
with gr.Box():
gr.Markdown('## Step 2')
with gr.Row():
with gr.Column():
with gr.Row():
editing_type = gr.Radio(
label='Editing Type',
choices=['hairstyle', 'color', 'both'],
value='both',
type='value')
with gr.Row():
hairstyles = load_hairstyle_list()
hairstyle_index = gr.Dropdown(label='Hairstyle',
choices=hairstyles,
value='afro',
type='index')
with gr.Row():
color_description = gr.Textbox(label='Color', value='red')
with gr.Row():
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Result')
preprocess_button.click(fn=model.detect_and_align_face,
inputs=input_image,
outputs=aligned_face)
aligned_face.change(fn=model.reconstruct_face,
inputs=aligned_face,
outputs=[reconstructed_face, latent])
editing_type.change(fn=update_step2_components,
inputs=editing_type,
outputs=[hairstyle_index, color_description])
run_button.click(fn=model.generate,
inputs=[
editing_type,
hairstyle_index,
color_description,
latent,
],
outputs=result)
demo.queue(max_size=10).launch()