from __future__ import annotations import argparse import os import pathlib import subprocess import sys from typing import Callable, Union import dlib import huggingface_hub import numpy as np import PIL.Image import torch import torch.nn as nn import torchvision.transforms as T if os.getenv('SYSTEM') == 'spaces' and not torch.cuda.is_available(): with open('patch.e4e') as f: subprocess.run('patch -p1'.split(), cwd='encoder4editing', stdin=f) with open('patch.hairclip') as f: subprocess.run('patch -p1'.split(), cwd='HairCLIP', stdin=f) app_dir = pathlib.Path(__file__).parent e4e_dir = app_dir / 'encoder4editing' sys.path.insert(0, e4e_dir.as_posix()) from models.psp import pSp from utils.alignment import align_face hairclip_dir = app_dir / 'HairCLIP' mapper_dir = hairclip_dir / 'mapper' sys.path.insert(0, hairclip_dir.as_posix()) sys.path.insert(0, mapper_dir.as_posix()) from mapper.datasets.latents_dataset_inference import LatentsDatasetInference from mapper.hairclip_mapper import HairCLIPMapper class Model: def __init__(self): self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') self.landmark_model = self._create_dlib_landmark_model() self.e4e = self._load_e4e() self.hairclip = self._load_hairclip() self.transform = self._create_transform() @staticmethod def _create_dlib_landmark_model(): path = huggingface_hub.hf_hub_download( 'public-data/dlib_face_landmark_model', 'shape_predictor_68_face_landmarks.dat') return dlib.shape_predictor(path) def _load_e4e(self) -> nn.Module: ckpt_path = huggingface_hub.hf_hub_download('public-data/e4e', 'e4e_ffhq_encode.pt') ckpt = torch.load(ckpt_path, map_location='cpu') opts = ckpt['opts'] opts['device'] = self.device.type opts['checkpoint_path'] = ckpt_path opts = argparse.Namespace(**opts) model = pSp(opts) model.to(self.device) model.eval() return model def _load_hairclip(self) -> nn.Module: ckpt_path = huggingface_hub.hf_hub_download('public-data/HairCLIP', 'hairclip.pt') ckpt = torch.load(ckpt_path, map_location='cpu') opts = ckpt['opts'] opts['device'] = self.device.type opts['checkpoint_path'] = ckpt_path opts['editing_type'] = 'both' opts['input_type'] = 'text' opts['hairstyle_description'] = 'HairCLIP/mapper/hairstyle_list.txt' opts['color_description'] = 'red' opts = argparse.Namespace(**opts) model = HairCLIPMapper(opts) model.to(self.device) model.eval() return model @staticmethod def _create_transform() -> Callable: transform = T.Compose([ T.Resize(256), T.CenterCrop(256), T.ToTensor(), T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) return transform def detect_and_align_face(self, image: str) -> PIL.Image.Image: image = align_face(filepath=image, predictor=self.landmark_model) return image @staticmethod def denormalize(tensor: torch.Tensor) -> torch.Tensor: return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) def postprocess(self, tensor: torch.Tensor) -> np.ndarray: tensor = self.denormalize(tensor) return tensor.cpu().numpy().transpose(1, 2, 0) @torch.inference_mode() def reconstruct_face( self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]: input_data = self.transform(image).unsqueeze(0).to(self.device) reconstructed_images, latents = self.e4e(input_data, randomize_noise=False, return_latents=True) reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1) reconstructed = self.postprocess(reconstructed) return reconstructed, latents[0] @torch.inference_mode() def generate(self, editing_type: str, hairstyle_index: int, color_description: str, latent: torch.Tensor) -> np.ndarray: opts = self.hairclip.opts opts.editing_type = editing_type opts.color_description = color_description if editing_type == 'color': hairstyle_index = 0 device = torch.device(opts.device) dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(), opts=opts) w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3] w = w.unsqueeze(0).to(device) hairstyle_text_inputs = hairstyle_text_inputs_list[ hairstyle_index].unsqueeze(0).to(device) color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device) hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device) color_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device) w_hat = w + 0.1 * self.hairclip.mapper( w, hairstyle_text_inputs, color_text_inputs, hairstyle_tensor_hairmasked, color_tensor_hairmasked, ) x_hat, _ = self.hairclip.decoder( [w_hat], input_is_latent=True, return_latents=True, randomize_noise=False, truncation=1, ) res = torch.clamp(x_hat[0].detach(), -1, 1) res = self.postprocess(res) return res