Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,58 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
outputs="text",
|
60 |
-
title="Python to R Code Converter using CodeLlama 7B Instruct",
|
61 |
-
description="Enter Python code below, and the tool will convert it to R code using the CodeLlama 7B Instruct model."
|
62 |
-
).launch()
|
63 |
-
|
64 |
-
if __name__ == "__main__":
|
65 |
-
main()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoProcessor
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
fashion_items = ['top', 'trousers', 'jumper']
|
9 |
+
|
10 |
+
# Load model and processor
|
11 |
+
model_name = 'Marqo/marqo-fashionSigLIP'
|
12 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
13 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
14 |
+
|
15 |
+
# Preprocess and normalize text data
|
16 |
+
with torch.no_grad():
|
17 |
+
# Ensure truncation and padding are activated
|
18 |
+
processed_texts = processor(
|
19 |
+
text=fashion_items,
|
20 |
+
return_tensors="pt",
|
21 |
+
truncation=True, # Ensure text is truncated to fit model input size
|
22 |
+
padding=True # Pad shorter sequences so that all are the same length
|
23 |
+
)['input_ids']
|
24 |
+
|
25 |
+
text_features = model.get_text_features(processed_texts)
|
26 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
27 |
+
|
28 |
+
# Prediction function
|
29 |
+
def predict_from_url(url):
|
30 |
+
# Check if the URL is empty
|
31 |
+
if not url:
|
32 |
+
return {"Error": "Please input a URL"}
|
33 |
+
|
34 |
+
try:
|
35 |
+
image = Image.open(BytesIO(requests.get(url).content))
|
36 |
+
except Exception as e:
|
37 |
+
return {"Error": f"Failed to load image: {str(e)}"}
|
38 |
+
|
39 |
+
processed_image = processor(images=image, return_tensors="pt")['pixel_values']
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
image_features = model.get_image_features(processed_image)
|
43 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
44 |
+
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
|
45 |
+
|
46 |
+
return {fashion_items[i]: float(text_probs[0, i]) for i in range(len(fashion_items))}
|
47 |
+
|
48 |
+
# Gradio interface
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=predict_from_url,
|
51 |
+
inputs=gr.Textbox(label="Enter Image URL"),
|
52 |
+
outputs=gr.Label(label="Classification Results"),
|
53 |
+
title="Fashion Item Classifier",
|
54 |
+
allow_flagging="never"
|
55 |
+
)
|
56 |
+
|
57 |
+
# Launch the interface
|
58 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|