File size: 1,617 Bytes
0d4c818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import faiss
from langchain_together.embeddings import TogetherEmbeddings
import numpy as np
import pickle
import os
import streamlit as st

os.environ["TOGETHER_API_KEY"] = st.secrets["together_api_key"]

@st.cache_data
def load_data():
    with open("list_of_texts.pkl", "rb") as f:
        list_of_texts = pickle.load(f)
    index = faiss.read_index("faiss.index")
    return list_of_texts, index


def response(sentence, embeddings, list_of_texts, index, ):
    vector = embeddings.embed_query(sentence)
    vector = np.array([vector]).astype('float32')
    k = 5
    D, I = index.search(vector, k)
    nearest_texts = [list_of_texts[i] for i in I[0]]
    return nearest_texts[0]

embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
list_of_texts, index = load_data()
st.title("Ship Document Retreiver")

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []
    
# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


if prompt := st.chat_input("What is up?"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    get_response = response(prompt, embeddings, list_of_texts, index)
    with st.chat_message("assistant"):
        st.markdown(get_response)
    st.session_state.messages.append({"role": "assistant", "content": response})