subhrajit-mohanty commited on
Commit
03f39ce
·
verified ·
1 Parent(s): 688cd08

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -7,4 +7,58 @@ sdk: docker
7
  pinned: false
8
  ---
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
7
  pinned: false
8
  ---
9
 
10
+ ```
11
+ import mlflow
12
+ import numpy as np
13
+ from sklearn.linear_model import LinearRegression
14
+ from sklearn.metrics import mean_squared_error
15
+ from sklearn.datasets import make_regression
16
+ from sklearn.model_selection import train_test_split
17
+
18
+ # Set the tracking URI to point to your MLflow server
19
+ mlflow.set_tracking_uri("https://subhrajit-mohanty-mlflow.hf.space")
20
+
21
+ # Create an experiment or use an existing one
22
+ experiment_name = "file-store-experiment"
23
+ try:
24
+ experiment_id = mlflow.create_experiment(experiment_name)
25
+ except:
26
+ experiment_id = mlflow.get_experiment_by_name(experiment_name).experiment_id
27
+
28
+ # Set the experiment
29
+ mlflow.set_experiment(experiment_name)
30
+
31
+ # Create a simple dataset
32
+ X, y = make_regression(n_samples=100, n_features=5, noise=0.1, random_state=42)
33
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
34
+
35
+ # Start an MLflow run
36
+ with mlflow.start_run(run_name="metrics_only_example"):
37
+ # Log parameters
38
+ mlflow.log_param("model_type", "LinearRegression")
39
+ mlflow.log_param("n_features", X.shape[1])
40
+ mlflow.log_param("n_samples", X.shape[0])
41
+
42
+ # Train the model
43
+ model = LinearRegression()
44
+ model.fit(X_train, y_train)
45
+
46
+ # Make predictions and evaluate
47
+ y_pred = model.predict(X_test)
48
+ mse = mean_squared_error(y_test, y_pred)
49
+
50
+ # Log metrics only (avoiding artifact storage)
51
+ mlflow.log_metric("mse", mse)
52
+ mlflow.log_metric("r2_score", model.score(X_test, y_test))
53
+
54
+ # Log coefficients as parameters instead of storing the model
55
+ for i, coef in enumerate(model.coef_):
56
+ mlflow.log_param(f"coef_{i}", coef)
57
+ mlflow.log_param("intercept", model.intercept_)
58
+
59
+ print(f"Run completed with MSE: {mse:.4f}")
60
+ print(f"Metrics and parameters have been logged to MLflow")
61
+ print(f"Run ID: {mlflow.active_run().info.run_id}")
62
+ ```
63
+
64
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference