Spaces:
Running
Running
SUBHRAJIT MOHANTY
commited on
Commit
Β·
86e4192
1
Parent(s):
6cb77d4
Fixing issues
Browse files
app.py
CHANGED
@@ -78,13 +78,32 @@ async def lifespan(app: FastAPI):
|
|
78 |
|
79 |
# Initialize OpenAI client with Groq endpoint
|
80 |
try:
|
|
|
|
|
|
|
|
|
81 |
app_state.openai_client = AsyncOpenAI(
|
82 |
api_key=Config.GROQ_API_KEY,
|
83 |
-
base_url=Config.GROQ_BASE_URL
|
|
|
84 |
)
|
85 |
print("β OpenAI client initialized with Groq endpoint")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
print(f"β Error initializing OpenAI client: {e}")
|
|
|
88 |
raise e
|
89 |
|
90 |
# Initialize Qdrant client
|
@@ -355,9 +374,24 @@ async def health_check():
|
|
355 |
except Exception as e:
|
356 |
embedding_health = {"status": "error", "error": str(e)}
|
357 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
return {
|
359 |
"status": "healthy" if app_state.embedding_service is not None else "unhealthy",
|
360 |
-
"openai_client":
|
361 |
"qdrant": qdrant_status,
|
362 |
"embedding_service": embedding_health,
|
363 |
"collection": Config.COLLECTION_NAME,
|
@@ -379,21 +413,28 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
379 |
raise HTTPException(status_code=400, detail="No user message found")
|
380 |
|
381 |
last_user_message = user_messages[-1].content
|
|
|
382 |
|
383 |
# Retrieve relevant chunks
|
384 |
-
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
# Build context-aware prompt
|
387 |
if relevant_chunks:
|
388 |
context_prompt = RAGService.build_context_prompt(last_user_message, relevant_chunks)
|
389 |
-
|
390 |
-
# Replace the last user message with context-enhanced version
|
391 |
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)]
|
|
|
392 |
else:
|
393 |
enhanced_messages = request.messages
|
|
|
394 |
|
395 |
# Convert to OpenAI format
|
396 |
openai_messages = [{"role": msg.role, "content": msg.content} for msg in enhanced_messages]
|
|
|
397 |
|
398 |
if request.stream:
|
399 |
return StreamingResponse(
|
@@ -403,12 +444,22 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
403 |
else:
|
404 |
return await create_chat_completion(openai_messages, request)
|
405 |
|
|
|
|
|
406 |
except Exception as e:
|
|
|
|
|
|
|
|
|
407 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
408 |
|
409 |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
|
410 |
"""Create a non-streaming chat completion"""
|
411 |
try:
|
|
|
|
|
|
|
|
|
412 |
response = await app_state.openai_client.chat.completions.create(
|
413 |
model=request.model,
|
414 |
messages=messages,
|
@@ -418,8 +469,13 @@ async def create_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
418 |
stream=False
|
419 |
)
|
420 |
|
|
|
|
|
|
|
|
|
|
|
421 |
# Convert response to OpenAI format (already compatible)
|
422 |
-
|
423 |
id=response.id,
|
424 |
created=response.created,
|
425 |
model=response.model,
|
@@ -438,7 +494,14 @@ async def create_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
438 |
} if response.usage else None
|
439 |
)
|
440 |
|
|
|
|
|
|
|
441 |
except Exception as e:
|
|
|
|
|
|
|
|
|
442 |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
|
443 |
|
444 |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
|
|
|
78 |
|
79 |
# Initialize OpenAI client with Groq endpoint
|
80 |
try:
|
81 |
+
print(f"Configuring OpenAI client with:")
|
82 |
+
print(f" Base URL: {Config.GROQ_BASE_URL}")
|
83 |
+
print(f" API Key: {'*' * 10}...{Config.GROQ_API_KEY[-4:] if Config.GROQ_API_KEY else 'None'}")
|
84 |
+
|
85 |
app_state.openai_client = AsyncOpenAI(
|
86 |
api_key=Config.GROQ_API_KEY,
|
87 |
+
base_url=Config.GROQ_BASE_URL,
|
88 |
+
timeout=60.0 # Add timeout
|
89 |
)
|
90 |
print("β OpenAI client initialized with Groq endpoint")
|
91 |
+
|
92 |
+
# Test the client with a simple request
|
93 |
+
try:
|
94 |
+
test_response = await app_state.openai_client.chat.completions.create(
|
95 |
+
model="mixtral-8x7b-32768",
|
96 |
+
messages=[{"role": "user", "content": "Hello"}],
|
97 |
+
max_tokens=10
|
98 |
+
)
|
99 |
+
print(f"β OpenAI client test successful - Response ID: {test_response.id}")
|
100 |
+
except Exception as test_error:
|
101 |
+
print(f"β OpenAI client test failed: {test_error}")
|
102 |
+
print(" This might cause issues with chat completions")
|
103 |
+
|
104 |
except Exception as e:
|
105 |
print(f"β Error initializing OpenAI client: {e}")
|
106 |
+
print(f" Error type: {type(e)}")
|
107 |
raise e
|
108 |
|
109 |
# Initialize Qdrant client
|
|
|
374 |
except Exception as e:
|
375 |
embedding_health = {"status": "error", "error": str(e)}
|
376 |
|
377 |
+
# Test OpenAI client
|
378 |
+
if app_state.openai_client is None:
|
379 |
+
openai_health = {"status": "not_initialized", "error": "OpenAI client is None"}
|
380 |
+
else:
|
381 |
+
try:
|
382 |
+
# Quick test of OpenAI client
|
383 |
+
test_response = await app_state.openai_client.chat.completions.create(
|
384 |
+
model="mixtral-8x7b-32768",
|
385 |
+
messages=[{"role": "user", "content": "test"}],
|
386 |
+
max_tokens=1
|
387 |
+
)
|
388 |
+
openai_health = {"status": "healthy", "test_response_id": test_response.id}
|
389 |
+
except Exception as e:
|
390 |
+
openai_health = {"status": "error", "error": str(e)}
|
391 |
+
|
392 |
return {
|
393 |
"status": "healthy" if app_state.embedding_service is not None else "unhealthy",
|
394 |
+
"openai_client": openai_health,
|
395 |
"qdrant": qdrant_status,
|
396 |
"embedding_service": embedding_health,
|
397 |
"collection": Config.COLLECTION_NAME,
|
|
|
413 |
raise HTTPException(status_code=400, detail="No user message found")
|
414 |
|
415 |
last_user_message = user_messages[-1].content
|
416 |
+
print(f"Processing query: {last_user_message[:100]}...")
|
417 |
|
418 |
# Retrieve relevant chunks
|
419 |
+
try:
|
420 |
+
relevant_chunks = await RAGService.retrieve_relevant_chunks(last_user_message)
|
421 |
+
print(f"Retrieved {len(relevant_chunks)} chunks")
|
422 |
+
except Exception as e:
|
423 |
+
print(f"Error in retrieval: {e}")
|
424 |
+
relevant_chunks = []
|
425 |
|
426 |
# Build context-aware prompt
|
427 |
if relevant_chunks:
|
428 |
context_prompt = RAGService.build_context_prompt(last_user_message, relevant_chunks)
|
|
|
|
|
429 |
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)]
|
430 |
+
print("Using context-enhanced prompt")
|
431 |
else:
|
432 |
enhanced_messages = request.messages
|
433 |
+
print("Using original prompt (no context)")
|
434 |
|
435 |
# Convert to OpenAI format
|
436 |
openai_messages = [{"role": msg.role, "content": msg.content} for msg in enhanced_messages]
|
437 |
+
print(f"Sending {len(openai_messages)} messages to OpenAI API")
|
438 |
|
439 |
if request.stream:
|
440 |
return StreamingResponse(
|
|
|
444 |
else:
|
445 |
return await create_chat_completion(openai_messages, request)
|
446 |
|
447 |
+
except HTTPException:
|
448 |
+
raise
|
449 |
except Exception as e:
|
450 |
+
print(f"Unexpected error in chat_completions: {e}")
|
451 |
+
print(f"Error type: {type(e)}")
|
452 |
+
import traceback
|
453 |
+
traceback.print_exc()
|
454 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
455 |
|
456 |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
|
457 |
"""Create a non-streaming chat completion"""
|
458 |
try:
|
459 |
+
print(f"Calling OpenAI API with model: {request.model}")
|
460 |
+
print(f"Messages count: {len(messages)}")
|
461 |
+
print(f"Max tokens: {request.max_tokens}")
|
462 |
+
|
463 |
response = await app_state.openai_client.chat.completions.create(
|
464 |
model=request.model,
|
465 |
messages=messages,
|
|
|
469 |
stream=False
|
470 |
)
|
471 |
|
472 |
+
print(f"Received response from OpenAI API")
|
473 |
+
print(f"Response ID: {response.id}")
|
474 |
+
print(f"Response model: {response.model}")
|
475 |
+
print(f"Choices count: {len(response.choices)}")
|
476 |
+
|
477 |
# Convert response to OpenAI format (already compatible)
|
478 |
+
result = ChatCompletionResponse(
|
479 |
id=response.id,
|
480 |
created=response.created,
|
481 |
model=response.model,
|
|
|
494 |
} if response.usage else None
|
495 |
)
|
496 |
|
497 |
+
print(f"Successfully created response")
|
498 |
+
return result
|
499 |
+
|
500 |
except Exception as e:
|
501 |
+
print(f"Error in create_chat_completion: {e}")
|
502 |
+
print(f"Error type: {type(e)}")
|
503 |
+
import traceback
|
504 |
+
traceback.print_exc()
|
505 |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
|
506 |
|
507 |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
|