Spaces:
Running
Running
SUBHRAJIT MOHANTY
commited on
Commit
·
c3ff739
1
Parent(s):
80a4ae3
Updated app.py with dynamic API call
Browse files
app.py
CHANGED
@@ -10,9 +10,10 @@ import os
|
|
10 |
from contextlib import asynccontextmanager
|
11 |
import tempfile
|
12 |
import shutil
|
|
|
13 |
|
14 |
# Third-party imports
|
15 |
-
from openai import AsyncOpenAI
|
16 |
from qdrant_client import AsyncQdrantClient
|
17 |
from qdrant_client.models import Distance, VectorParams, PointStruct, Filter, FieldCondition, MatchValue
|
18 |
from sentence_transformers import SentenceTransformer
|
@@ -27,12 +28,13 @@ class Message(BaseModel):
|
|
27 |
content: str = Field(..., description="The content of the message")
|
28 |
|
29 |
class ChatCompletionRequest(BaseModel):
|
30 |
-
model: str = Field(default="
|
31 |
messages: List[Message] = Field(..., description="List of messages")
|
32 |
max_tokens: Optional[int] = Field(default=1024, description="Maximum tokens to generate")
|
33 |
temperature: Optional[float] = Field(default=0.7, description="Temperature for sampling")
|
34 |
stream: Optional[bool] = Field(default=False, description="Whether to stream responses")
|
35 |
top_p: Optional[float] = Field(default=1.0, description="Top-p sampling parameter")
|
|
|
36 |
|
37 |
class ChatCompletionResponse(BaseModel):
|
38 |
id: str
|
@@ -59,20 +61,152 @@ class DocumentSearchRequest(BaseModel):
|
|
59 |
|
60 |
# Configuration
|
61 |
class Config:
|
|
|
|
|
62 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
63 |
-
|
|
|
64 |
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
|
65 |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
66 |
COLLECTION_NAME = os.getenv("COLLECTION_NAME", "documents")
|
|
|
|
|
67 |
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
68 |
-
TOP_K = int(os.getenv("TOP_K", "10"))
|
69 |
-
SIMILARITY_THRESHOLD = float(os.getenv("SIMILARITY_THRESHOLD", "0.1"))
|
70 |
DEVICE = os.getenv("DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
class ApplicationState:
|
73 |
"""Application state container"""
|
74 |
def __init__(self):
|
75 |
-
self.
|
76 |
self.qdrant_client = None
|
77 |
self.embedding_service = None
|
78 |
self.document_manager = None
|
@@ -421,7 +555,6 @@ class RAGService:
|
|
421 |
return []
|
422 |
|
423 |
# Use a lower similarity threshold for RAG to get more results
|
424 |
-
# Try multiple thresholds if needed
|
425 |
min_score = 0.1 # Lower threshold for RAG
|
426 |
|
427 |
print(f"RAG Search - Query: '{query}', Limit: {top_k}, Min Score: {min_score}")
|
@@ -457,7 +590,7 @@ class RAGService:
|
|
457 |
if not results:
|
458 |
return query
|
459 |
|
460 |
-
# Build context parts
|
461 |
context_parts = []
|
462 |
for result in results:
|
463 |
context_parts.append(f"Source: {result['file_path']}\n{result['text']}")
|
@@ -478,25 +611,14 @@ Answer the question directly and naturally. Also Respond it in Markdown Format""
|
|
478 |
@asynccontextmanager
|
479 |
async def lifespan(app: FastAPI):
|
480 |
# Startup
|
481 |
-
if not Config.GROQ_API_KEY:
|
482 |
-
raise ValueError("GROQ_API_KEY environment variable is required")
|
483 |
-
|
484 |
print("Initializing services...")
|
485 |
|
486 |
-
# Initialize OpenAI
|
487 |
try:
|
488 |
-
|
489 |
-
print(
|
490 |
-
print(f" API Key: {'*' * 10}...{Config.GROQ_API_KEY[-4:] if Config.GROQ_API_KEY else 'None'}")
|
491 |
-
|
492 |
-
app_state.openai_client = AsyncOpenAI(
|
493 |
-
api_key=Config.GROQ_API_KEY,
|
494 |
-
base_url=Config.GROQ_BASE_URL,
|
495 |
-
timeout=60.0
|
496 |
-
)
|
497 |
-
print("✓ OpenAI client initialized with Groq endpoint")
|
498 |
except Exception as e:
|
499 |
-
print(f"✗ Error initializing OpenAI
|
500 |
raise e
|
501 |
|
502 |
# Initialize Qdrant client
|
@@ -541,9 +663,6 @@ async def lifespan(app: FastAPI):
|
|
541 |
if app_state.qdrant_client:
|
542 |
await app_state.qdrant_client.close()
|
543 |
print("✓ Qdrant client closed")
|
544 |
-
if app_state.openai_client:
|
545 |
-
await app_state.openai_client.close()
|
546 |
-
print("✓ OpenAI client closed")
|
547 |
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'):
|
548 |
app_state.embedding_service.executor.shutdown(wait=True)
|
549 |
print("✓ Embedding service executor shutdown")
|
@@ -554,15 +673,15 @@ async def lifespan(app: FastAPI):
|
|
554 |
|
555 |
# Initialize FastAPI app
|
556 |
app = FastAPI(
|
557 |
-
title="Enhanced RAG API with
|
558 |
-
description="OpenAI-compatible API for RAG with
|
559 |
version="1.0.0",
|
560 |
lifespan=lifespan
|
561 |
)
|
562 |
|
563 |
@app.get("/")
|
564 |
async def root():
|
565 |
-
return {"message": "Enhanced RAG API with
|
566 |
|
567 |
@app.get("/health")
|
568 |
async def health_check():
|
@@ -586,37 +705,61 @@ async def health_check():
|
|
586 |
except Exception as e:
|
587 |
embedding_health = {"status": "error", "error": str(e)}
|
588 |
|
589 |
-
# Test OpenAI
|
590 |
-
if app_state.
|
591 |
-
openai_health = {"status": "not_initialized", "error": "OpenAI
|
592 |
else:
|
593 |
try:
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
except Exception as e:
|
601 |
openai_health = {"status": "error", "error": str(e)}
|
602 |
|
603 |
return {
|
604 |
"status": "healthy" if app_state.embedding_service is not None else "unhealthy",
|
605 |
-
"
|
606 |
"qdrant": qdrant_status,
|
607 |
"embedding_service": embedding_health,
|
608 |
"document_manager": "initialized" if app_state.document_manager else "not_initialized",
|
609 |
"collection": Config.COLLECTION_NAME,
|
610 |
"embedding_model": Config.EMBEDDING_MODEL,
|
611 |
-
"
|
|
|
|
|
|
|
612 |
}
|
613 |
|
614 |
@app.post("/v1/chat/completions")
|
615 |
async def chat_completions(request: ChatCompletionRequest):
|
616 |
-
"""OpenAI-compatible chat completions endpoint with enhanced RAG"""
|
617 |
|
618 |
-
if not app_state.
|
619 |
-
raise HTTPException(status_code=500, detail="OpenAI
|
620 |
|
621 |
try:
|
622 |
# Get the last user message for retrieval
|
@@ -665,10 +808,21 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
665 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
666 |
|
667 |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
|
668 |
-
"""Create a non-streaming chat completion"""
|
669 |
try:
|
670 |
-
|
671 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
messages=messages,
|
673 |
max_tokens=request.max_tokens,
|
674 |
temperature=request.temperature,
|
@@ -679,7 +833,7 @@ async def create_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
679 |
result = ChatCompletionResponse(
|
680 |
id=response.id,
|
681 |
created=response.created,
|
682 |
-
model=response.model,
|
683 |
choices=[{
|
684 |
"index": choice.index,
|
685 |
"message": {
|
@@ -702,10 +856,21 @@ async def create_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
702 |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
|
703 |
|
704 |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
|
705 |
-
"""Stream chat completion responses"""
|
706 |
try:
|
707 |
-
|
708 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
709 |
messages=messages,
|
710 |
max_tokens=request.max_tokens,
|
711 |
temperature=request.temperature,
|
@@ -720,7 +885,7 @@ async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRe
|
|
720 |
chunk_response = ChatCompletionChunk(
|
721 |
id=chunk.id,
|
722 |
created=chunk.created,
|
723 |
-
model=chunk.model,
|
724 |
choices=[{
|
725 |
"index": choice.index,
|
726 |
"delta": {
|
@@ -912,6 +1077,46 @@ async def get_collection_info():
|
|
912 |
except Exception as e:
|
913 |
raise HTTPException(status_code=500, detail=f"Error getting collection info: {str(e)}")
|
914 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
915 |
if __name__ == "__main__":
|
916 |
import uvicorn
|
917 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
10 |
from contextlib import asynccontextmanager
|
11 |
import tempfile
|
12 |
import shutil
|
13 |
+
import random
|
14 |
|
15 |
# Third-party imports
|
16 |
+
from openai import OpenAI, AsyncOpenAI
|
17 |
from qdrant_client import AsyncQdrantClient
|
18 |
from qdrant_client.models import Distance, VectorParams, PointStruct, Filter, FieldCondition, MatchValue
|
19 |
from sentence_transformers import SentenceTransformer
|
|
|
28 |
content: str = Field(..., description="The content of the message")
|
29 |
|
30 |
class ChatCompletionRequest(BaseModel):
|
31 |
+
model: str = Field(default="auto", description="Model to use (auto for dynamic selection)")
|
32 |
messages: List[Message] = Field(..., description="List of messages")
|
33 |
max_tokens: Optional[int] = Field(default=1024, description="Maximum tokens to generate")
|
34 |
temperature: Optional[float] = Field(default=0.7, description="Temperature for sampling")
|
35 |
stream: Optional[bool] = Field(default=False, description="Whether to stream responses")
|
36 |
top_p: Optional[float] = Field(default=1.0, description="Top-p sampling parameter")
|
37 |
+
provider: Optional[str] = Field(default="random", description="Provider to use (random, openrouter, groq)")
|
38 |
|
39 |
class ChatCompletionResponse(BaseModel):
|
40 |
id: str
|
|
|
61 |
|
62 |
# Configuration
|
63 |
class Config:
|
64 |
+
# Provider API Keys
|
65 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
66 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
67 |
+
|
68 |
+
# Vector DB Configuration
|
69 |
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
|
70 |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
71 |
COLLECTION_NAME = os.getenv("COLLECTION_NAME", "documents")
|
72 |
+
|
73 |
+
# Embedding Configuration
|
74 |
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
75 |
+
TOP_K = int(os.getenv("TOP_K", "10"))
|
76 |
+
SIMILARITY_THRESHOLD = float(os.getenv("SIMILARITY_THRESHOLD", "0.1"))
|
77 |
DEVICE = os.getenv("DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
|
78 |
|
79 |
+
# Models
|
80 |
+
OPENROUTER_MODELS = ["deepseek/deepseek-chat-v3-0324:free", "deepseek/deepseek-r1-0528:free", "qwen/qwen3-235b-a22b:free", "google/gemini-2.0-flash-exp:free"]
|
81 |
+
GROQ_MODELS = ["llama-3.3-70b-versatile"]
|
82 |
+
|
83 |
+
class DynamicOpenAIService:
|
84 |
+
"""Service for dynamic OpenAI provider selection"""
|
85 |
+
|
86 |
+
def __init__(self):
|
87 |
+
self.validate_api_keys()
|
88 |
+
|
89 |
+
def validate_api_keys(self):
|
90 |
+
"""Validate that at least one API key is available"""
|
91 |
+
if not Config.OPENROUTER_API_KEY and not Config.GROQ_API_KEY:
|
92 |
+
raise ValueError("At least one API key (OPENROUTER_API_KEY or GROQ_API_KEY) must be provided")
|
93 |
+
|
94 |
+
if not Config.OPENROUTER_API_KEY:
|
95 |
+
print("Warning: OPENROUTER_API_KEY not found, will only use Groq")
|
96 |
+
if not Config.GROQ_API_KEY:
|
97 |
+
print("Warning: GROQ_API_KEY not found, will only use OpenRouter")
|
98 |
+
|
99 |
+
def get_client(self, provider="random"):
|
100 |
+
"""Get OpenAI client for specified provider"""
|
101 |
+
available_providers = []
|
102 |
+
|
103 |
+
if Config.OPENROUTER_API_KEY:
|
104 |
+
available_providers.append("openrouter")
|
105 |
+
if Config.GROQ_API_KEY:
|
106 |
+
available_providers.append("groq")
|
107 |
+
|
108 |
+
if not available_providers:
|
109 |
+
raise ValueError("No API keys available for any provider")
|
110 |
+
|
111 |
+
if provider == "random":
|
112 |
+
provider = random.choice(available_providers)
|
113 |
+
elif provider not in available_providers:
|
114 |
+
# Fallback to available provider
|
115 |
+
provider = available_providers[0]
|
116 |
+
print(f"Requested provider not available, using {provider}")
|
117 |
+
|
118 |
+
print(f"Selected provider: {provider}")
|
119 |
+
|
120 |
+
if provider == "openrouter":
|
121 |
+
return (
|
122 |
+
OpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"),
|
123 |
+
OPENROUTER_MODELS,
|
124 |
+
provider
|
125 |
+
)
|
126 |
+
else: # groq
|
127 |
+
return (
|
128 |
+
OpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"),
|
129 |
+
GROQ_MODELS,
|
130 |
+
provider
|
131 |
+
)
|
132 |
+
|
133 |
+
async def get_async_client(self, provider="random"):
|
134 |
+
"""Get AsyncOpenAI client for specified provider"""
|
135 |
+
available_providers = []
|
136 |
+
|
137 |
+
if Config.OPENROUTER_API_KEY:
|
138 |
+
available_providers.append("openrouter")
|
139 |
+
if Config.GROQ_API_KEY:
|
140 |
+
available_providers.append("groq")
|
141 |
+
|
142 |
+
if not available_providers:
|
143 |
+
raise ValueError("No API keys available for any provider")
|
144 |
+
|
145 |
+
if provider == "random":
|
146 |
+
provider = random.choice(available_providers)
|
147 |
+
elif provider not in available_providers:
|
148 |
+
# Fallback to available provider
|
149 |
+
provider = available_providers[0]
|
150 |
+
print(f"Requested provider not available, using {provider}")
|
151 |
+
|
152 |
+
print(f"Selected provider: {provider}")
|
153 |
+
|
154 |
+
if provider == "openrouter":
|
155 |
+
return (
|
156 |
+
AsyncOpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"),
|
157 |
+
OPENROUTER_MODELS,
|
158 |
+
provider
|
159 |
+
)
|
160 |
+
else: # groq
|
161 |
+
return (
|
162 |
+
AsyncOpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"),
|
163 |
+
GROQ_MODELS,
|
164 |
+
provider
|
165 |
+
)
|
166 |
+
|
167 |
+
def get_text_response(self, prompt, provider="random", model=None):
|
168 |
+
"""Get text response from AI"""
|
169 |
+
client, models, selected_provider = self.get_client(provider)
|
170 |
+
|
171 |
+
if not model or model == "auto":
|
172 |
+
model = random.choice(models)
|
173 |
+
|
174 |
+
print(f"Using model: {model}")
|
175 |
+
|
176 |
+
response = client.chat.completions.create(
|
177 |
+
model=model,
|
178 |
+
messages=[{"role": "user", "content": prompt}],
|
179 |
+
max_tokens=1024,
|
180 |
+
temperature=0.7
|
181 |
+
)
|
182 |
+
|
183 |
+
return response.choices[0].message.content
|
184 |
+
|
185 |
+
def get_text_response_streaming(self, prompt, provider="random", model=None):
|
186 |
+
"""Get streaming text response from AI"""
|
187 |
+
client, models, selected_provider = self.get_client(provider)
|
188 |
+
|
189 |
+
if not model or model == "auto":
|
190 |
+
model = random.choice(models)
|
191 |
+
|
192 |
+
print(f"Using model: {model}")
|
193 |
+
|
194 |
+
stream = client.chat.completions.create(
|
195 |
+
model=model,
|
196 |
+
messages=[{"role": "user", "content": prompt}],
|
197 |
+
max_tokens=1024,
|
198 |
+
temperature=0.7,
|
199 |
+
stream=True
|
200 |
+
)
|
201 |
+
|
202 |
+
for chunk in stream:
|
203 |
+
if chunk.choices[0].delta.content is not None:
|
204 |
+
yield chunk.choices[0].delta.content
|
205 |
+
|
206 |
class ApplicationState:
|
207 |
"""Application state container"""
|
208 |
def __init__(self):
|
209 |
+
self.openai_service = None
|
210 |
self.qdrant_client = None
|
211 |
self.embedding_service = None
|
212 |
self.document_manager = None
|
|
|
555 |
return []
|
556 |
|
557 |
# Use a lower similarity threshold for RAG to get more results
|
|
|
558 |
min_score = 0.1 # Lower threshold for RAG
|
559 |
|
560 |
print(f"RAG Search - Query: '{query}', Limit: {top_k}, Min Score: {min_score}")
|
|
|
590 |
if not results:
|
591 |
return query
|
592 |
|
593 |
+
# Build context parts
|
594 |
context_parts = []
|
595 |
for result in results:
|
596 |
context_parts.append(f"Source: {result['file_path']}\n{result['text']}")
|
|
|
611 |
@asynccontextmanager
|
612 |
async def lifespan(app: FastAPI):
|
613 |
# Startup
|
|
|
|
|
|
|
614 |
print("Initializing services...")
|
615 |
|
616 |
+
# Initialize dynamic OpenAI service
|
617 |
try:
|
618 |
+
app_state.openai_service = DynamicOpenAIService()
|
619 |
+
print("✓ Dynamic OpenAI service initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
except Exception as e:
|
621 |
+
print(f"✗ Error initializing OpenAI service: {e}")
|
622 |
raise e
|
623 |
|
624 |
# Initialize Qdrant client
|
|
|
663 |
if app_state.qdrant_client:
|
664 |
await app_state.qdrant_client.close()
|
665 |
print("✓ Qdrant client closed")
|
|
|
|
|
|
|
666 |
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'):
|
667 |
app_state.embedding_service.executor.shutdown(wait=True)
|
668 |
print("✓ Embedding service executor shutdown")
|
|
|
673 |
|
674 |
# Initialize FastAPI app
|
675 |
app = FastAPI(
|
676 |
+
title="Enhanced RAG API with Dynamic Provider Selection",
|
677 |
+
description="OpenAI-compatible API for RAG with dynamic provider selection (OpenRouter/Groq) and document management",
|
678 |
version="1.0.0",
|
679 |
lifespan=lifespan
|
680 |
)
|
681 |
|
682 |
@app.get("/")
|
683 |
async def root():
|
684 |
+
return {"message": "Enhanced RAG API with Dynamic Provider Selection", "status": "running"}
|
685 |
|
686 |
@app.get("/health")
|
687 |
async def health_check():
|
|
|
705 |
except Exception as e:
|
706 |
embedding_health = {"status": "error", "error": str(e)}
|
707 |
|
708 |
+
# Test OpenAI service
|
709 |
+
if app_state.openai_service is None:
|
710 |
+
openai_health = {"status": "not_initialized", "error": "OpenAI service is None"}
|
711 |
else:
|
712 |
try:
|
713 |
+
# Test both providers if available
|
714 |
+
test_results = {}
|
715 |
+
if Config.OPENROUTER_API_KEY:
|
716 |
+
try:
|
717 |
+
client, models, provider = app_state.openai_service.get_client("openrouter")
|
718 |
+
test_response = client.chat.completions.create(
|
719 |
+
model=models[0],
|
720 |
+
messages=[{"role": "user", "content": "test"}],
|
721 |
+
max_tokens=1
|
722 |
+
)
|
723 |
+
test_results["openrouter"] = {"status": "healthy", "model": models[0]}
|
724 |
+
except Exception as e:
|
725 |
+
test_results["openrouter"] = {"status": "error", "error": str(e)}
|
726 |
+
|
727 |
+
if Config.GROQ_API_KEY:
|
728 |
+
try:
|
729 |
+
client, models, provider = app_state.openai_service.get_client("groq")
|
730 |
+
test_response = client.chat.completions.create(
|
731 |
+
model=models[0],
|
732 |
+
messages=[{"role": "user", "content": "test"}],
|
733 |
+
max_tokens=1
|
734 |
+
)
|
735 |
+
test_results["groq"] = {"status": "healthy", "model": models[0]}
|
736 |
+
except Exception as e:
|
737 |
+
test_results["groq"] = {"status": "error", "error": str(e)}
|
738 |
+
|
739 |
+
openai_health = {"status": "healthy", "providers": test_results}
|
740 |
except Exception as e:
|
741 |
openai_health = {"status": "error", "error": str(e)}
|
742 |
|
743 |
return {
|
744 |
"status": "healthy" if app_state.embedding_service is not None else "unhealthy",
|
745 |
+
"openai_service": openai_health,
|
746 |
"qdrant": qdrant_status,
|
747 |
"embedding_service": embedding_health,
|
748 |
"document_manager": "initialized" if app_state.document_manager else "not_initialized",
|
749 |
"collection": Config.COLLECTION_NAME,
|
750 |
"embedding_model": Config.EMBEDDING_MODEL,
|
751 |
+
"available_providers": {
|
752 |
+
"openrouter": bool(Config.OPENROUTER_API_KEY),
|
753 |
+
"groq": bool(Config.GROQ_API_KEY)
|
754 |
+
}
|
755 |
}
|
756 |
|
757 |
@app.post("/v1/chat/completions")
|
758 |
async def chat_completions(request: ChatCompletionRequest):
|
759 |
+
"""OpenAI-compatible chat completions endpoint with enhanced RAG and dynamic provider selection"""
|
760 |
|
761 |
+
if not app_state.openai_service:
|
762 |
+
raise HTTPException(status_code=500, detail="OpenAI service not initialized")
|
763 |
|
764 |
try:
|
765 |
# Get the last user message for retrieval
|
|
|
808 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
809 |
|
810 |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
|
811 |
+
"""Create a non-streaming chat completion using dynamic provider selection"""
|
812 |
try:
|
813 |
+
# Get async client with dynamic provider selection
|
814 |
+
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider)
|
815 |
+
|
816 |
+
# Select model
|
817 |
+
if request.model == "auto" or not request.model:
|
818 |
+
selected_model = random.choice(models)
|
819 |
+
else:
|
820 |
+
selected_model = request.model
|
821 |
+
|
822 |
+
print(f"Using provider: {selected_provider}, model: {selected_model}")
|
823 |
+
|
824 |
+
response = await client.chat.completions.create(
|
825 |
+
model=selected_model,
|
826 |
messages=messages,
|
827 |
max_tokens=request.max_tokens,
|
828 |
temperature=request.temperature,
|
|
|
833 |
result = ChatCompletionResponse(
|
834 |
id=response.id,
|
835 |
created=response.created,
|
836 |
+
model=f"{selected_provider}:{response.model}", # Include provider in model name
|
837 |
choices=[{
|
838 |
"index": choice.index,
|
839 |
"message": {
|
|
|
856 |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
|
857 |
|
858 |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
|
859 |
+
"""Stream chat completion responses using dynamic provider selection"""
|
860 |
try:
|
861 |
+
# Get async client with dynamic provider selection
|
862 |
+
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider)
|
863 |
+
|
864 |
+
# Select model
|
865 |
+
if request.model == "auto" or not request.model:
|
866 |
+
selected_model = random.choice(models)
|
867 |
+
else:
|
868 |
+
selected_model = request.model
|
869 |
+
|
870 |
+
print(f"Using provider: {selected_provider}, model: {selected_model}")
|
871 |
+
|
872 |
+
stream = await client.chat.completions.create(
|
873 |
+
model=selected_model,
|
874 |
messages=messages,
|
875 |
max_tokens=request.max_tokens,
|
876 |
temperature=request.temperature,
|
|
|
885 |
chunk_response = ChatCompletionChunk(
|
886 |
id=chunk.id,
|
887 |
created=chunk.created,
|
888 |
+
model=f"{selected_provider}:{chunk.model}", # Include provider in model name
|
889 |
choices=[{
|
890 |
"index": choice.index,
|
891 |
"delta": {
|
|
|
1077 |
except Exception as e:
|
1078 |
raise HTTPException(status_code=500, detail=f"Error getting collection info: {str(e)}")
|
1079 |
|
1080 |
+
# New endpoint to get available providers and models
|
1081 |
+
@app.get("/v1/providers")
|
1082 |
+
async def get_providers():
|
1083 |
+
"""Get available providers and their models"""
|
1084 |
+
try:
|
1085 |
+
if not app_state.openai_service:
|
1086 |
+
raise HTTPException(status_code=500, detail="OpenAI service not initialized")
|
1087 |
+
|
1088 |
+
available_providers = {}
|
1089 |
+
|
1090 |
+
if Config.OPENROUTER_API_KEY:
|
1091 |
+
available_providers["openrouter"] = {
|
1092 |
+
"status": "available",
|
1093 |
+
"models": OPENROUTER_MODELS
|
1094 |
+
}
|
1095 |
+
else:
|
1096 |
+
available_providers["openrouter"] = {
|
1097 |
+
"status": "unavailable",
|
1098 |
+
"reason": "API key not provided"
|
1099 |
+
}
|
1100 |
+
|
1101 |
+
if Config.GROQ_API_KEY:
|
1102 |
+
available_providers["groq"] = {
|
1103 |
+
"status": "available",
|
1104 |
+
"models": GROQ_MODELS
|
1105 |
+
}
|
1106 |
+
else:
|
1107 |
+
available_providers["groq"] = {
|
1108 |
+
"status": "unavailable",
|
1109 |
+
"reason": "API key not provided"
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
return {
|
1113 |
+
"providers": available_providers,
|
1114 |
+
"default_selection": "random"
|
1115 |
+
}
|
1116 |
+
|
1117 |
+
except Exception as e:
|
1118 |
+
raise HTTPException(status_code=500, detail=f"Error getting providers: {str(e)}")
|
1119 |
+
|
1120 |
if __name__ == "__main__":
|
1121 |
import uvicorn
|
1122 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|