subrata2003 commited on
Commit
0c399e7
·
verified ·
1 Parent(s): 0bd315b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -0
app.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import joblib
3
+ import pandas as pd
4
+ from streamlit_option_menu import option_menu
5
+ from reportlab.pdfgen import canvas
6
+ from reportlab.lib.pagesizes import letter
7
+ from reportlab.lib import colors
8
+ from io import BytesIO
9
+ import base64
10
+ # Load the trained model
11
+ model = joblib.load('loan_approval_model.pkl')
12
+
13
+ # Define the function to make predictions
14
+ def predict_loan_approval(features):
15
+ prediction = model.predict([features])
16
+ return prediction[0]
17
+
18
+ # Streamlit app
19
+ st.title("Loan Approval Prediction System")
20
+
21
+ # Input fields for user data
22
+ st.sidebar.header("Menu")
23
+ if __name__ == '__main__':
24
+ st.markdown("## Loan Approval Prediction System")
25
+ with st.sidebar:
26
+ selected = option_menu('Loan Approval Prediction System',
27
+ ['Predict Loan Approval',
28
+ 'Our Prediction Records',
29
+ 'About Me'],
30
+ icons=['info','book','info'],
31
+ default_index=0)
32
+
33
+ if selected =="Predict Loan Approval":
34
+ # Example input fields
35
+ Name = st.text_input('Enter your name:')
36
+ gender = st.selectbox("Gender", options=[0, 1], format_func=lambda x: 'Male' if x == 1 else 'Female')
37
+ married = st.selectbox("Married", options=[0, 1], format_func=lambda x: 'Yes' if x == 1 else 'No')
38
+ education = st.selectbox("Education", options=[0, 1], format_func=lambda x: 'Graduate' if x == 1 else 'Not Graduate')
39
+ self_employed = st.selectbox("Self Employed", options=[0, 1], format_func=lambda x: 'Yes' if x == 1 else 'No')
40
+ applicant_income = st.number_input("Applicant Income", min_value=0, value=50000)
41
+ coapplicant_income = st.number_input("Coapplicant Income", min_value=0.0, value=0.0)
42
+ loan_amount = st.number_input("Loan Amount", min_value=0.0, value=10000.0)
43
+ loan_amount_term = st.number_input("Loan Amount Term", min_value=0.0, value=360.0)
44
+ credit_history = st.selectbox("Credit History", options=[0.0, 1.0], format_func=lambda x: 'No' if x == 0.0 else 'Yes')
45
+ property_area = st.selectbox("Property Area", options=[0, 1, 2], format_func=lambda x: ['Urban', 'Semiurban', 'Rural'][x])
46
+ dependents = st.number_input("Dependents", min_value=0, value=0)
47
+
48
+ # Collect inputs into a list
49
+ user_input = [gender, married, education, self_employed, applicant_income, coapplicant_income,
50
+ loan_amount, loan_amount_term, credit_history, property_area, dependents]
51
+
52
+ # Predict
53
+ if st.button("Predict"):
54
+ result = predict_loan_approval(user_input)
55
+ if result == 1:
56
+ st.success("Loan Approved")
57
+ else:
58
+ st.error("Loan Denied")
59
+ f = open("user_records.txt", "a")
60
+ f.write("\n")
61
+ new_data = str([Name, gender, married, education, self_employed, applicant_income, coapplicant_income,
62
+ loan_amount, loan_amount_term, credit_history, property_area, dependents, result])
63
+ leng = len(new_data)
64
+ f.write(new_data[1:leng-1])
65
+ f.close()
66
+
67
+ def generate_report(Name, result):
68
+ buffer = BytesIO()
69
+ c = canvas.Canvas(buffer, pagesize=letter)
70
+ width, height = letter
71
+ c.drawString(100, height-50, "Loan Prediction Report")
72
+ c.drawString(100, height-70, "--------------------------------------------")
73
+ c.drawString(100, height-90, f"Name: {Name}")
74
+ c.drawString(100, height-110, f"Gender: {gender}")
75
+ c.drawString(100, height-130, f"Married?: {married}")
76
+ c.drawString(100, height-150, f"education Status: {education}")
77
+ c.drawString(100, height-170, f"Self Employed?): {self_employed}")
78
+ c.drawString(100, height-190, f"Income: {applicant_income}")
79
+ c.drawString(100, height-210, f"Gurrantor Income: {coapplicant_income}")
80
+ c.drawString(100, height-230, f"Loan Amount: {loan_amount}")
81
+ c.drawString(100, height-250, f"Credit History: {credit_history}")
82
+ c.drawString(100, height-270, f"Property: {property_area}")
83
+ c.drawString(100, height-290, f"Dependents: {dependents}")
84
+ c.drawString(100, height-310, "--------------------------------------------")
85
+ c.drawString(100, height-330, "Prediction:")
86
+ if result == 1:
87
+ c.setFillColorRGB(0, 1, 0) # Red color
88
+ prediction_text = "Loan Approved"
89
+ else:
90
+ c.setFillColorRGB(1, 0, 0) # Green color
91
+ prediction_text = "Loan Not Approved"
92
+ c.drawString(100, height-345, f"{prediction_text}")
93
+ c.setFillColor(colors.black)
94
+ c.setFont("Helvetica", 10)
95
+ footnote = "Note: The prediction is based on probability. Actual results may vary. Please consult an expert for a detailed check."
96
+ c.drawString(100, 200, footnote)
97
+ c.showPage()
98
+ c.save()
99
+ pdf_bytes = buffer.getvalue()
100
+ buffer.close()
101
+ return pdf_bytes
102
+
103
+ pdf_bytes = generate_report(Name, result)
104
+ pdf_base64 = base64.b64encode(pdf_bytes).decode('utf-8')
105
+ pdf_display = f'<a href="data:application/pdf;base64,{pdf_base64}" download="Loan_Approval_report_{Name}.pdf">Download Report</a>'
106
+ st.markdown(pdf_display, unsafe_allow_html=True)
107
+
108
+ if selected == "Our Prediction Records":
109
+ st.markdown("<h3 style='text-align: center;'>PREDICTION RECORDS OF OUR PREVIOUS USERS</h1>", unsafe_allow_html=True)
110
+ f = pd.read_csv("user_records.txt")
111
+ #st.table(f)
112
+ st.table(f.style.set_table_attributes('style="width:100%;"'))
113
+ st.markdown("____")
114
+ st.write("All the records are stored only for academic and research purpose & will not be used for any other means.")
115
+
116
+ if selected == "About Me":
117
+ st.markdown("<h2 style='text-align: center;'>ABOUT</h2>", unsafe_allow_html=True)
118
+ st.markdown("____")
119
+ st.markdown("<p style='text-align: center;'>This is an academic project made by B.Tech Computer Science And Engineering 3rd year student.</p>", unsafe_allow_html=True)
120
+ st.markdown("____")
121
+ st.markdown("<h4 style='text-align: center;'>Developed and maintained by</h4>", unsafe_allow_html=True)
122
+ st.markdown("<p style='text-align: center;'>Subrata Bhuin</p>", unsafe_allow_html=True)
123
+ st.markdown("<p style='text-align: center;'>[email protected]</p>", unsafe_allow_html=True)
124
+ st.markdown("____")