import streamlit as st import joblib import pandas as pd from streamlit_option_menu import option_menu from reportlab.pdfgen import canvas from reportlab.lib.pagesizes import letter from reportlab.lib import colors from io import BytesIO import base64 # Load the trained model model = joblib.load('loan_approval_model.pkl') # Define the function to make predictions def predict_loan_approval(features): prediction = model.predict([features]) return prediction[0] # Streamlit app st.title("Loan Approval Prediction System") # Input fields for user data st.sidebar.header("Menu") if __name__ == '__main__': st.markdown("## Loan Approval Prediction System") with st.sidebar: selected = option_menu('Loan Approval Prediction System', ['Predict Loan Approval', 'Our Prediction Records', 'About Me'], icons=['info','book','info'], default_index=0) if selected =="Predict Loan Approval": # Example input fields Name = st.text_input('Enter your name:') gender = st.selectbox("Gender", options=[0, 1], format_func=lambda x: 'Male' if x == 1 else 'Female') married = st.selectbox("Married", options=[0, 1], format_func=lambda x: 'Yes' if x == 1 else 'No') education = st.selectbox("Education", options=[0, 1], format_func=lambda x: 'Graduate' if x == 1 else 'Not Graduate') self_employed = st.selectbox("Self Employed", options=[0, 1], format_func=lambda x: 'Yes' if x == 1 else 'No') applicant_income = st.number_input("Applicant Income", min_value=0, value=50000) coapplicant_income = st.number_input("Coapplicant Income", min_value=0.0, value=0.0) loan_amount = st.number_input("Loan Amount", min_value=0.0, value=10000.0) loan_amount_term = st.number_input("Loan Amount Term", min_value=0.0, value=360.0) credit_history = st.selectbox("Credit History", options=[0.0, 1.0], format_func=lambda x: 'No' if x == 0.0 else 'Yes') property_area = st.selectbox("Property Area", options=[0, 1, 2], format_func=lambda x: ['Urban', 'Semiurban', 'Rural'][x]) dependents = st.number_input("Dependents", min_value=0, value=0) # Collect inputs into a list user_input = [gender, married, education, self_employed, applicant_income, coapplicant_income, loan_amount, loan_amount_term, credit_history, property_area, dependents] # Predict if st.button("Predict"): result = predict_loan_approval(user_input) if result == 1: st.success("Loan Approved") else: st.error("Loan Denied") f = open("user_records.txt", "a") f.write("\n") new_data = str([Name, gender, married, education, self_employed, applicant_income, coapplicant_income, loan_amount, loan_amount_term, credit_history, property_area, dependents, result]) leng = len(new_data) f.write(new_data[1:leng-1]) f.close() def generate_report(Name, result): buffer = BytesIO() c = canvas.Canvas(buffer, pagesize=letter) width, height = letter c.drawString(100, height-50, "Loan Prediction Report") c.drawString(100, height-70, "--------------------------------------------") c.drawString(100, height-90, f"Name: {Name}") c.drawString(100, height-110, f"Gender: {gender}") c.drawString(100, height-130, f"Married?: {married}") c.drawString(100, height-150, f"education Status: {education}") c.drawString(100, height-170, f"Self Employed?): {self_employed}") c.drawString(100, height-190, f"Income: {applicant_income}") c.drawString(100, height-210, f"Gurrantor Income: {coapplicant_income}") c.drawString(100, height-230, f"Loan Amount: {loan_amount}") c.drawString(100, height-250, f"Credit History: {credit_history}") c.drawString(100, height-270, f"Property: {property_area}") c.drawString(100, height-290, f"Dependents: {dependents}") c.drawString(100, height-310, "--------------------------------------------") c.drawString(100, height-330, "Prediction:") if result == 1: c.setFillColorRGB(0, 1, 0) # Red color prediction_text = "Loan Approved" else: c.setFillColorRGB(1, 0, 0) # Green color prediction_text = "Loan Not Approved" c.drawString(100, height-345, f"{prediction_text}") c.setFillColor(colors.black) c.setFont("Helvetica", 10) footnote = "Note: The prediction is based on probability. Actual results may vary. Please consult an expert for a detailed check." c.drawString(100, 200, footnote) c.showPage() c.save() pdf_bytes = buffer.getvalue() buffer.close() return pdf_bytes pdf_bytes = generate_report(Name, result) pdf_base64 = base64.b64encode(pdf_bytes).decode('utf-8') pdf_display = f'Download Report' st.markdown(pdf_display, unsafe_allow_html=True) if selected == "Our Prediction Records": st.markdown("

PREDICTION RECORDS OF OUR PREVIOUS USERS

", unsafe_allow_html=True) f = pd.read_csv("user_records.txt") #st.table(f) st.table(f.style.set_table_attributes('style="width:100%;"')) st.markdown("____") st.write("All the records are stored only for academic and research purpose & will not be used for any other means.") if selected == "About Me": st.markdown("

ABOUT

", unsafe_allow_html=True) st.markdown("____") st.markdown("

This is an academic project made by B.Tech Computer Science And Engineering 3rd year student.

", unsafe_allow_html=True) st.markdown("____") st.markdown("

Developed and maintained by

", unsafe_allow_html=True) st.markdown("

Subrata Bhuin

", unsafe_allow_html=True) st.markdown("

subratabhuin6@gmail.com

", unsafe_allow_html=True) st.markdown("____")