Spaces:
No application file
No application file
File size: 8,870 Bytes
477fa2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Building a MAFAND Eval\n",
"\n",
"This notebook shows how to:\n",
"- Build and run an eval using the [MAFAND dataset](https://github.com/masakhane-io/lafand-mt)\n",
"- Load the results and into a Pandas Dataframe"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import os\n",
"import requests\n",
"import pandas as pd\n",
"\n",
"\n",
"# Install Evals if you haven't already\n",
"# %pip install -e ../."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download the MAFAND dataset\n",
"\n",
"lang_pairs = [\n",
" \"en-amh\", \"en-hau\", \"en-ibo\", \"en-kin\", \"en-lug\", \"en-nya\", \"en-pcm\", \"en-sna\", \"en-swa\", \"en-tsn\",\n",
" \"en-twi\", \"en-xho\", \"en-yor\", \"en-zul\", \"fr-bam\", \"fr-bbj\", \"fr-ewe\", \"fr-fon\", \"fr-mos\", \"fr-wol\"\n",
"]\n",
"\n",
"# Assuming this notebook is in examples/\n",
"registry_pth = os.path.join(os.getcwd(), \"..\", \"evals\", \"registry\")\n",
"data_path = os.path.join(registry_pth, \"data\", \"lafand-mt\")\n",
"os.makedirs(data_path, exist_ok=True)\n",
"\n",
"for pair in lang_pairs:\n",
" os.makedirs(os.path.join(data_path, pair), exist_ok=True)\n",
" for dev_test in ['dev', 'test']:\n",
" raw_tsv_file = f'https://raw.githubusercontent.com/masakhane-io/lafand-mt/main/data/tsv_files/{pair}/{dev_test}.tsv'\n",
" with open(os.path.join(data_path, pair, f\"{dev_test}.tsv\"), \"w\", encoding=\"utf-8\") as f:\n",
" f.write(requests.get(raw_tsv_file).text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Build the prompts using Chat format. We support converting Chat conversations to text for non-Chat models\n",
"\n",
"sys_msg = \"Translate the text from {} to {}.\"\n",
"def create_chat_prompt(sys_msg, input_lang, output_lang, input_text):\n",
" return [\n",
" {\"role\": \"system\", \"content\": sys_msg.format(input_lang, output_lang)}, \n",
" {\"role\": \"user\", \"content\": input_text}\n",
" ]\n",
"\n",
"def create_chat_example(input_text, correct_translation):\n",
" \"\"\"\n",
" Form few-shot prompts in the recommended format: https://github.com/openai/openai-python/blob/main/chatml.md#few-shot-prompting\n",
" \"\"\"\n",
" return [\n",
" {\"role\": \"system\", \"content\": input_text, \"name\": \"example_user\"},\n",
" {\"role\": \"system\", \"content\": correct_translation, \"name\": \"example_assistant\"},\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import yaml\n",
"import os\n",
"\n",
"translation_paths = sorted([os.path.join(data_path, d) for d in os.listdir(data_path)])\n",
"\n",
"# Assuming this notebook is in examples/\n",
"registry_pth = os.path.join(os.getcwd(), \"..\", \"evals\", \"registry\")\n",
"output_path = os.path.join(registry_pth, \"data\", \"lafand-mt\")\n",
"\n",
"registry_yaml = {}\n",
"\n",
"for input_path in translation_paths:\n",
" langs = input_path.split(\"/\")[-1]\n",
" input_lang, output_lang = langs.split('-')\n",
" pair_path = os.path.join(output_path, f\"{input_lang}-{output_lang}\")\n",
" os.makedirs(pair_path, exist_ok=True)\n",
"\n",
" # Create few-shot prompts\n",
" dev_df = pd.read_csv(os.path.join(input_path, \"dev.tsv\"), sep=\"\\t\")\n",
" dev_df[\"sample\"] = dev_df.apply(lambda x: create_chat_example(x[input_lang], x[output_lang]), axis=1)\n",
" few_shot_pth = os.path.join(pair_path, f\"{input_lang}-{output_lang}_few_shot.jsonl\")\n",
" dev_df[[\"sample\"]].to_json(few_shot_pth, lines=True, orient=\"records\")\n",
"\n",
" # Create test prompts and ideal completions\n",
" test_df = pd.read_csv(os.path.join(input_path, \"test.tsv\"), sep=\"\\t\")\n",
" test_df[\"input\"] = test_df[input_lang].apply(lambda x: create_chat_prompt(sys_msg, input_lang, output_lang, x))\n",
" test_df[\"ideal\"] = test_df[output_lang]\n",
" \n",
" samples_pth = os.path.join(pair_path, f\"{input_lang}-{output_lang}_samples.jsonl\")\n",
" test_df[[\"input\", \"ideal\"]].to_json(samples_pth, lines=True, orient=\"records\")\n",
" eval_id = f\"mafand_translation_{input_lang}-{output_lang}\"\n",
"\n",
" registry_yaml[eval_id] = {\n",
" \"id\": f\"{eval_id}.test.v1\",\n",
" \"metrics\": [\"accuracy\"]\n",
" }\n",
" registry_yaml[f\"{eval_id}.test.v1\"] = {\n",
" \"class\": \"evals.elsuite.translate:Translate\",\n",
" \"args\": {\n",
" \"samples_jsonl\": samples_pth,\n",
" \"few_shot_jsonl\": few_shot_pth,\n",
" \"num_few_shot\": 4,\n",
" }\n",
" }\n",
"\n",
"os.makedirs(os.path.join(registry_pth, \"evals\"), exist_ok=True)\n",
"with open(os.path.join(registry_pth, \"evals\", \"mafand.yaml\"), \"w\") as f:\n",
" yaml.dump(registry_yaml, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This will generate a JSONL which will record samples and logs and store it in /tmp/evallogs\n",
"!oaieval gpt-3.5-turbo mafand_translation_en-ibo --max_samples 20"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# How to process the log events generated by oaieval\n",
"\n",
"log_name = \"EDIT THIS\" # copy from above\n",
"events = f\"/tmp/evallogs/{log_name}\"\n",
"\n",
"with open(events, \"r\") as f:\n",
" events_df = pd.read_json(f, lines=True)\n",
"\n",
"matches_df = events_df[events_df.type == \"match\"].reset_index(drop=True)\n",
"matches_df = matches_df.join(pd.json_normalize(matches_df.data))\n",
"matches_df.correct.value_counts().plot.bar(title=\"Correctness of generated answers\", xlabel=\"sacrebleu score >30\", ylabel=\"Count\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# your list of scores\n",
"scores = matches_df['sacrebleu_sentence_score']\n",
"\n",
"# define the threshold scores as a range from the minimum to the maximum score, in increments of 5\n",
"thresholds = range(int(min(scores)), int(max(scores)) + 5, 5)\n",
"\n",
"# count the number of scores above and below each threshold\n",
"above_counts = [len([score for score in scores if score >= threshold]) for threshold in thresholds]\n",
"\n",
"# plot the counts as a step function\n",
"plt.step(thresholds, above_counts, label='number of samples withabove')\n",
"\n",
"# set the x and y labels\n",
"plt.xlabel('sacrebleu threshold')\n",
"plt.ylabel('number of samples w/ score > threshold')\n",
"\n",
"# show the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Inspect samples\n",
"for i, r in pd.json_normalize(events_df[events_df.type == \"sampling\"].data).iterrows():\n",
" print(f\"Prompt: {r.prompt}\")\n",
" print(f\"Sampled: {r.sampled}\")\n",
" print(\"-\" * 25)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.9"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"vscode": {
"interpreter": {
"hash": "fdbe172e46cfba2329a5e8d5b64cdf2d12f4dfd7d9bcea153ecef62d1d51933b"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|