File size: 6,761 Bytes
477fa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Building an MMLU Eval\n",
    "\n",
    "This notebook shows how to:\n",
    "- Build and run an eval\n",
    "- Load the results and into a Pandas Dataframe\n",
    "\n",
    "We use the `evals.elsuite.basic.match:Match` Eval class here to check whether new completions match the correct answer. Under the hood, it will generate a completion with the choice of model for each prompt, check if the completion matches the true answer, then logs a result."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install, and download MMLU if you haven't already\n",
    "%pip install -e .\n",
    "\n",
    "!curl -O https://people.eecs.berkeley.edu/~hendrycks/data.tar\n",
    "!tar -xf data.tar\n",
    "data_pth = \"data\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "\n",
    "# Assuming this notebook is in examples/\n",
    "registry_pth = os.path.join(os.getcwd(), \"../evals/registry\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Build the prompts using Chat format. We support converting Chat conversations to text for non-Chat models\n",
    "\n",
    "choices = [\"A\", \"B\", \"C\", \"D\"]\n",
    "sys_msg = \"The following are multiple choice questions (with answers) about {}.\"\n",
    "def create_chat_prompt(sys_msg, question, answers, subject):\n",
    "    user_prompt = f\"{question}\\n\" + \"\\n\".join([f\"{choice}. {answer}\" for choice, answer in zip(choices, answers)]) + \"\\nAnswer:\"\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": sys_msg.format(subject)}, \n",
    "        {\"role\": \"user\", \"content\": user_prompt}\n",
    "    ]\n",
    "\n",
    "def create_chat_example(question, answers, correct_answer):\n",
    "    \"\"\"\n",
    "    Form few-shot prompts in the recommended format: https://github.com/openai/openai-python/blob/main/chatml.md#few-shot-prompting\n",
    "    \"\"\"\n",
    "    user_prompt = f\"{question}\\n\" + \"\\n\".join([f\"{choice}. {answer}\" for choice, answer in zip(choices, answers)]) + \"\\nAnswer:\"\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": user_prompt, \"name\": \"example_user\"},\n",
    "        {\"role\": \"system\", \"content\": correct_answer, \"name\": \"example_assistant\"},\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import yaml\n",
    "subjects = sorted([f.split(\"_test.csv\")[0] for f in os.listdir(os.path.join(data_pth, \"test\")) if \"_test.csv\" in f])\n",
    "\n",
    "registry_yaml = {}\n",
    "\n",
    "for subject in subjects:\n",
    "    subject_pth = os.path.join(registry_pth, \"data\", \"mmlu\", subject)\n",
    "    os.makedirs(subject_pth, exist_ok=True)\n",
    "\n",
    "    # Create few-shot prompts\n",
    "    dev_df = pd.read_csv(os.path.join(data_pth, \"dev\", subject + \"_dev.csv\"), names=(\"Question\", \"A\", \"B\", \"C\", \"D\", \"Answer\"))\n",
    "    dev_df[\"sample\"] = dev_df.apply(lambda x: create_chat_example(x[\"Question\"], x[[\"A\", \"B\", \"C\", \"D\"]], x[\"Answer\"]), axis=1)\n",
    "    few_shot_pth = os.path.join(subject_pth, \"few_shot.jsonl\")     \n",
    "    dev_df[[\"sample\"]].to_json(few_shot_pth, lines=True, orient=\"records\")\n",
    "\n",
    "    # Create test prompts and ideal completions\n",
    "    test_df = pd.read_csv(os.path.join(data_pth, \"test\", subject + \"_test.csv\"), names=(\"Question\", \"A\", \"B\", \"C\", \"D\", \"Answer\"))\n",
    "    test_df[\"input\"] = test_df.apply(lambda x: create_chat_prompt(sys_msg, x[\"Question\"], x[[\"A\", \"B\", \"C\", \"D\"]], subject), axis=1)\n",
    "    test_df[\"ideal\"] = test_df.Answer\n",
    "    samples_pth = os.path.join(subject_pth, \"samples.jsonl\")     \n",
    "    test_df[[\"input\", \"ideal\"]].to_json(samples_pth, lines=True, orient=\"records\")\n",
    "\n",
    "    eval_id = f\"match_mmlu_{subject}\"\n",
    "\n",
    "    registry_yaml[eval_id] = {\n",
    "        \"id\": f\"{eval_id}.test.v1\",\n",
    "        \"metrics\": [\"accuracy\"]\n",
    "    }\n",
    "    registry_yaml[f\"{eval_id}.test.v1\"] = {\n",
    "        \"class\": \"evals.elsuite.basic.match:Match\",\n",
    "        \"args\": {\n",
    "            \"samples_jsonl\": samples_pth,\n",
    "            \"few_shot_jsonl\": few_shot_pth,\n",
    "            \"num_few_shot\": 4,\n",
    "        }\n",
    "    }\n",
    "\n",
    "with open(os.path.join(registry_pth, \"evals\", \"mmlu.yaml\"), \"w\") as f:\n",
    "    yaml.dump(registry_yaml, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This will generate a JSONL which will record samples and logs and store it in /tmp/evallogs\n",
    "!oaieval gpt-3.5-turbo match_mmlu_anatomy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# How to process the log events generated by oaieval\n",
    "events = \"/tmp/evallogs/{log_name}\"\n",
    "\n",
    "with open(events, \"r\") as f:\n",
    "    events_df = pd.read_json(f, lines=True)\n",
    "\n",
    "matches_df = events_df[events_df.type == \"match\"].reset_index(drop=True)\n",
    "matches_df = matches_df.join(pd.json_normalize(matches_df.data))\n",
    "matches_df.correct.value_counts().plot.bar(title=\"Correctness of generated answers\", xlabel=\"Correctness\", ylabel=\"Count\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Inspect samples\n",
    "for i, r in pd.json_normalize(events_df[events_df.type == \"sampling\"].data).iterrows():\n",
    "    print(f\"Prompt: {r.prompt}\")\n",
    "    print(f\"Sampled: {r.sampled}\")\n",
    "    print(\"-\" * 25)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "oss_evals",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}