lawllm / lawtrainmodel.py
suchinth08's picture
Upload 3 files
9a092af verified
raw
history blame
2.06 kB
import transformers
import torch
import os
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from InstructorEmbedding import INSTRUCTOR
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
import textwrap
def gen_vectordb():
tokenizer = AutoTokenizer.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_length=256
)
local_llm = HuggingFacePipeline(pipeline=pipe)
loader = DirectoryLoader('C:/Users/SudheerRChinthala/sivallm/new_papers', glob="./*.pdf", loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
persist_directory = 'db'
embedding = instructor_embeddings
vectordb = Chroma.from_documents(documents=texts,
embedding=embedding,
persist_directory=persist_directory)
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True)
vectordb.persist()
vectordb = None
if __name__=="__main__":
gen_vectordb()