Spaces:
Sleeping
Sleeping
Upload lawchain.py
Browse files- lawchain.py +58 -0
lawchain.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
from transformers import pipeline
|
6 |
+
from langchain.llms import HuggingFacePipeline
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.document_loaders import TextLoader
|
11 |
+
from langchain.document_loaders import PyPDFLoader
|
12 |
+
from langchain.document_loaders import DirectoryLoader
|
13 |
+
from InstructorEmbedding import INSTRUCTOR
|
14 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
15 |
+
from langchain_community.vectorstores import Chroma
|
16 |
+
import textwrap
|
17 |
+
import streamlit as st
|
18 |
+
|
19 |
+
persist_directory = 'db'
|
20 |
+
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
21 |
+
embedding = instructor_embeddings
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
|
23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
|
24 |
+
pipe = pipeline("text2text-generation",model=model, tokenizer=tokenizer, max_length=256)
|
25 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
26 |
+
vectordb = Chroma(persist_directory=persist_directory,embedding_function=embedding)
|
27 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
28 |
+
|
29 |
+
def get_lpphelper_chain():
|
30 |
+
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
|
31 |
+
chain_type="stuff",
|
32 |
+
retriever=retriever,
|
33 |
+
return_source_documents=True)
|
34 |
+
return qa_chain
|
35 |
+
|
36 |
+
def wrap_text_preserve_newlines(text, width=110):
|
37 |
+
# Split the input text into lines based on newline characters
|
38 |
+
lines = text.split('\n')
|
39 |
+
|
40 |
+
# Wrap each line individually
|
41 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
42 |
+
|
43 |
+
# Join the wrapped lines back together using newline characters
|
44 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
45 |
+
|
46 |
+
return wrapped_text
|
47 |
+
|
48 |
+
def process_llm_response(llm_response):
|
49 |
+
wrap_text = wrap_text_preserve_newlines(llm_response['result'])
|
50 |
+
sources = '\n\nSources:'
|
51 |
+
print('\n\nSources:')
|
52 |
+
for source in llm_response["source_documents"]:
|
53 |
+
sources.join(source.metadata['source'])
|
54 |
+
print(wrap_text.join(sources))
|
55 |
+
return wrap_text.replace("<pad>","")
|
56 |
+
|
57 |
+
if __name__=="__main__":
|
58 |
+
get_lpphelper_chain()
|