Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- README.md +3 -12
- lawmain.py +29 -0
- lppchain.py +58 -0
- lpphelper.py +50 -0
README.md
CHANGED
@@ -1,12 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: purple
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.31.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# lawllm
|
2 |
+
Law LLM Model to work on Indian Judiciary Acts, Orders, Provisions and Citations
|
3 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lawmain.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from lppchain import get_lpphelper_chain,process_llm_response
|
4 |
+
|
5 |
+
#st.title( "Lakna Reddy & Associates 🤖")
|
6 |
+
col1, mid, col2 = st.columns(3)
|
7 |
+
image = Image.open('lawimage2.jpg')
|
8 |
+
with col1:
|
9 |
+
st.image(image, width=150)
|
10 |
+
with col2:
|
11 |
+
st.markdown("## Lakna Reddy & Associates")
|
12 |
+
|
13 |
+
question = st.text_input("Question: ")
|
14 |
+
@st.cache_resource
|
15 |
+
def load_qa_chain():
|
16 |
+
chain = get_lpphelper_chain()
|
17 |
+
return chain
|
18 |
+
|
19 |
+
if question:
|
20 |
+
chain = load_qa_chain()
|
21 |
+
#response = chain.run(question)
|
22 |
+
#llm_response = process_llm_response(response)
|
23 |
+
with st.spinner('Generating response...'):
|
24 |
+
response = chain.invoke(question)
|
25 |
+
print(response)
|
26 |
+
#answer = response['result']
|
27 |
+
answer = process_llm_response(response)
|
28 |
+
st.header("Answer")
|
29 |
+
st.write(answer.replace("<pad>",""))
|
lppchain.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
from transformers import pipeline
|
6 |
+
from langchain.llms import HuggingFacePipeline
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.document_loaders import TextLoader
|
11 |
+
from langchain.document_loaders import PyPDFLoader
|
12 |
+
from langchain.document_loaders import DirectoryLoader
|
13 |
+
from InstructorEmbedding import INSTRUCTOR
|
14 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
15 |
+
from langchain_community.vectorstores import Chroma
|
16 |
+
import textwrap
|
17 |
+
import streamlit as st
|
18 |
+
|
19 |
+
persist_directory = 'db'
|
20 |
+
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
21 |
+
embedding = instructor_embeddings
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
|
23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
|
24 |
+
pipe = pipeline("text2text-generation",model=model, tokenizer=tokenizer, max_length=256)
|
25 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
26 |
+
vectordb = Chroma(persist_directory=persist_directory,embedding_function=embedding)
|
27 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
28 |
+
|
29 |
+
def get_lpphelper_chain():
|
30 |
+
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
|
31 |
+
chain_type="stuff",
|
32 |
+
retriever=retriever,
|
33 |
+
return_source_documents=True)
|
34 |
+
return qa_chain
|
35 |
+
|
36 |
+
def wrap_text_preserve_newlines(text, width=110):
|
37 |
+
# Split the input text into lines based on newline characters
|
38 |
+
lines = text.split('\n')
|
39 |
+
|
40 |
+
# Wrap each line individually
|
41 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
42 |
+
|
43 |
+
# Join the wrapped lines back together using newline characters
|
44 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
45 |
+
|
46 |
+
return wrapped_text
|
47 |
+
|
48 |
+
def process_llm_response(llm_response):
|
49 |
+
wrap_text = wrap_text_preserve_newlines(llm_response['result'])
|
50 |
+
sources = '\n\nSources:'
|
51 |
+
print('\n\nSources:')
|
52 |
+
for source in llm_response["source_documents"]:
|
53 |
+
sources.join(source.metadata['source'])
|
54 |
+
print(wrap_text.join(sources))
|
55 |
+
return wrap_text.replace("<pad>","")
|
56 |
+
|
57 |
+
if __name__=="__main__":
|
58 |
+
get_lpphelper_chain()
|
lpphelper.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
from transformers import pipeline
|
6 |
+
from langchain.llms import HuggingFacePipeline
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.document_loaders import TextLoader
|
11 |
+
from langchain.document_loaders import PyPDFLoader
|
12 |
+
from langchain.document_loaders import DirectoryLoader
|
13 |
+
from InstructorEmbedding import INSTRUCTOR
|
14 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
15 |
+
from langchain_community.vectorstores import Chroma
|
16 |
+
import textwrap
|
17 |
+
|
18 |
+
def gen_vectordb():
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("lmsys/fastchat-t5-3b-v1.0")
|
21 |
+
pipe = pipeline(
|
22 |
+
"text2text-generation",
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer,
|
25 |
+
max_length=256
|
26 |
+
)
|
27 |
+
|
28 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
29 |
+
loader = DirectoryLoader('C:/Users/SudheerRChinthala/sivallm/new_papers', glob="./*.pdf", loader_cls=PyPDFLoader)
|
30 |
+
documents = loader.load()
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
32 |
+
texts = text_splitter.split_documents(documents)
|
33 |
+
|
34 |
+
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
35 |
+
persist_directory = 'db'
|
36 |
+
embedding = instructor_embeddings
|
37 |
+
vectordb = Chroma.from_documents(documents=texts,
|
38 |
+
embedding=embedding,
|
39 |
+
persist_directory=persist_directory)
|
40 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
41 |
+
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
|
42 |
+
chain_type="stuff",
|
43 |
+
retriever=retriever,
|
44 |
+
return_source_documents=True)
|
45 |
+
vectordb.persist()
|
46 |
+
vectordb = None
|
47 |
+
|
48 |
+
|
49 |
+
if __name__=="__main__":
|
50 |
+
gen_vectordb()
|