File size: 13,093 Bytes
55d914b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
from PIL import Image
import os
from threading import Lock
from OmniGen import OmniGenPipeline
class OmniGenManager:
def __init__(self):
self.pipe = None
self.lock = Lock()
self.current_quantization = None
def get_pipeline(self, quantization: bool) -> OmniGenPipeline:
"""
Get or initialize the pipeline with the specified quantization setting.
Uses a lock to ensure thread safety.
"""
with self.lock:
# Only reinitialize if quantization setting changed or pipeline doesn't exist
if self.pipe is None or self.current_quantization != quantization:
# Clear any existing pipeline
if self.pipe is not None:
del self.pipe
self.pipe = None
# Initialize new pipeline
self.pipe = OmniGenPipeline.from_pretrained(
"Shitao/OmniGen-v1",
Quantization=quantization
)
self.current_quantization = quantization
return self.pipe
# Create a single instance of the manager
pipeline_manager = OmniGenManager()
def generate_image(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed, quantization):
input_images = [img1, img2, img3]
# 去除 None
input_images = [img for img in input_images if img is not None]
if len(input_images) == 0:
input_images = None
# Get or initialize pipeline with current settings
pipe = pipeline_manager.get_pipeline(quantization)
# Generate image
output = pipe(
prompt=text,
input_images=input_images,
height=height,
width=width,
guidance_scale=guidance_scale,
img_guidance_scale=1.6,
num_inference_steps=inference_steps,
separate_cfg_infer=True, # set False can speed up the inference process
use_kv_cache=False,
seed=seed,
)
img = output[0]
return img
# def generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps):
# input_images = []
# if img1:
# input_images.append(Image.open(img1))
# if img2:
# input_images.append(Image.open(img2))
# if img3:
# input_images.append(Image.open(img3))
# return input_images[0] if input_images else None
def get_example():
case = [
[
"A curly-haired man in a red shirt is drinking tea.",
None,
None,
None,
1024,
1024,
2.5,
1.6,
50,
0,
],
[
"The woman in <img><|image_1|></img> waves her hand happily in the crowd",
"./imgs/test_cases/zhang.png",
None,
None,
1024,
1024,
2.5,
1.9,
50,
128,
],
[
"A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>.",
"./imgs/test_cases/two_man.jpg",
None,
None,
1024,
1024,
2.5,
1.6,
50,
0,
],
[
"Two woman are raising fried chicken legs in a bar. A woman is <img><|image_1|></img>. The other woman is <img><|image_2|></img>.",
"./imgs/test_cases/mckenna.jpg",
"./imgs/test_cases/Amanda.jpg",
None,
1024,
1024,
2.5,
1.8,
50,
168,
],
[
"A man and a short-haired woman with a wrinkled face are standing in front of a bookshelf in a library. The man is the man in the middle of <img><|image_1|></img>, and the woman is oldest woman in <img><|image_2|></img>",
"./imgs/test_cases/1.jpg",
"./imgs/test_cases/2.jpg",
None,
1024,
1024,
2.5,
1.6,
50,
60,
],
[
"A man and a woman are sitting at a classroom desk. The man is the man with yellow hair in <img><|image_1|></img>. The woman is the woman on the left of <img><|image_2|></img>",
"./imgs/test_cases/3.jpg",
"./imgs/test_cases/4.jpg",
None,
1024,
1024,
2.5,
1.8,
50,
66,
],
[
"The flower <img><|image_1|><\/img> is placed in the vase which is in the middle of <img><|image_2|><\/img> on a wooden table of a living room",
"./imgs/test_cases/rose.jpg",
"./imgs/test_cases/vase.jpg",
None,
1024,
1024,
2.5,
1.6,
50,
0,
],
[
"<img><|image_1|><img>\n Remove the woman's earrings. Replace the mug with a clear glass filled with sparkling iced cola.",
"./imgs/demo_cases/t2i_woman_with_book.png",
None,
None,
1024,
1024,
2.5,
1.6,
50,
222,
],
[
"Detect the skeleton of human in this image: <img><|image_1|></img>.",
"./imgs/test_cases/control.jpg",
None,
None,
1024,
1024,
2.0,
1.6,
50,
0,
],
[
"Generate a new photo using the following picture and text as conditions: <img><|image_1|><img>\n A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
"./imgs/demo_cases/skeletal.png",
None,
None,
1024,
1024,
2,
1.6,
50,
42,
],
[
"Following the pose of this image <img><|image_1|><img>, generate a new photo: A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
"./imgs/demo_cases/edit.png",
None,
None,
1024,
1024,
2.0,
1.6,
50,
123,
],
[
"Following the depth mapping of this image <img><|image_1|><img>, generate a new photo: A young girl is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
"./imgs/demo_cases/edit.png",
None,
None,
1024,
1024,
2.0,
1.6,
50,
1,
],
[
"<img><|image_1|><\/img> What item can be used to see the current time? Please remove it.",
"./imgs/test_cases/watch.jpg",
None,
None,
1024,
1024,
2.5,
1.6,
50,
0,
],
[
"According to the following examples, generate an output for the input.\nInput: <img><|image_1|></img>\nOutput: <img><|image_2|></img>\n\nInput: <img><|image_3|></img>\nOutput: ",
"./imgs/test_cases/icl1.jpg",
"./imgs/test_cases/icl2.jpg",
"./imgs/test_cases/icl3.jpg",
1024,
1024,
2.5,
1.6,
50,
1,
],
]
return case
def run_for_examples(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed):
return generate_image(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed)
description = """
OmniGen is a unified image generation model that you can use to perform various tasks, including but not limited to text-to-image generation, subject-driven generation, Identity-Preserving Generation, and image-conditioned generation.
For multi-modal to image generation, you should pass a string as `prompt`, and a list of image paths as `input_images`. The placeholder in the prompt should be in the format of `<img><|image_*|></img>` (for the first image, the placeholder is <img><|image_1|></img>. for the second image, the the placeholder is <img><|image_2|></img>).
For example, use an image of a woman to generate a new image:
prompt = "A woman holds a bouquet of flowers and faces the camera. Thw woman is \<img\>\<|image_1|\>\</img\>."
Tips:
- Oversaturated: If the image appears oversaturated, please reduce the `guidance_scale`.
- Low-quality: More detailed prompt will lead to better results.
- Animate Style: If the genereate images is in animate style, you can try to add `photo` to the prompt`.
- Edit generated image. If you generate a image by omnigen and then want to edit it, you cannot use the same seed to edit this image. For example, use seed=0 to generate image, and should use seed=1 to edit this image.
- For image editing tasks, we recommend placing the image before the editing instruction. For example, use `<img><|image_1|></img> remove suit`, rather than `remove suit <img><|image_1|></img>`.
"""
# Gradio 接口
with gr.Blocks() as demo:
gr.Markdown("# OmniGen: Unified Image Generation [paper](https://arxiv.org/abs/2409.11340) [code](https://github.com/VectorSpaceLab/OmniGen)")
gr.Markdown(description)
with gr.Row():
with gr.Column():
# 文本输入框
prompt_input = gr.Textbox(
label="Enter your prompt, use <img><|image_i|></img> to represent i-th input image", placeholder="Type your prompt here..."
)
with gr.Row(equal_height=True):
# 图片上传框
image_input_1 = gr.Image(label="<img><|image_1|></img>", type="filepath")
image_input_2 = gr.Image(label="<img><|image_2|></img>", type="filepath")
image_input_3 = gr.Image(label="<img><|image_3|></img>", type="filepath")
# 高度和宽度滑块
height_input = gr.Slider(
label="Height", minimum=256, maximum=2048, value=1024, step=16
)
width_input = gr.Slider(
label="Width", minimum=256, maximum=2048, value=1024, step=16
)
# 引导尺度输入
guidance_scale_input = gr.Slider(
label="Guidance Scale", minimum=1.0, maximum=5.0, value=2.5, step=0.1
)
img_guidance_scale_input = gr.Slider(
label="img_guidance_scale", minimum=1.0, maximum=2.0, value=1.6, step=0.1
)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=1, maximum=100, value=50, step=1
)
Quantization = gr.Checkbox(
label="Low VRAM (8-bit Quantization)", value=True
)
seed_input = gr.Slider(
label="Seed", minimum=0, maximum=2147483647, value=42, step=1
)
# 生成按钮
generate_button = gr.Button("Generate Image")
with gr.Column():
# 输出图像框
output_image = gr.Image(label="Output Image")
# 按钮点击事件
generate_button.click(
generate_image,
inputs=[
prompt_input,
image_input_1,
image_input_2,
image_input_3,
height_input,
width_input,
guidance_scale_input,
img_guidance_scale_input,
num_inference_steps,
seed_input,
Quantization,
],
outputs=output_image,
)
gr.Examples(
examples=get_example(),
fn=run_for_examples,
inputs=[
prompt_input,
image_input_1,
image_input_2,
image_input_3,
height_input,
width_input,
guidance_scale_input,
img_guidance_scale_input,
num_inference_steps,
seed_input,
Quantization,
],
outputs=output_image,
)
# 启动应用
demo.launch() |