Gita / app.py
sudhir2016's picture
Update app.py
521d3ef
raw
history blame
754 Bytes
import gradio as gr
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
embeddings = HuggingFaceEmbeddings()
#with open('Gita.txt') as f:
#gita = f.read()
gita="story of Arjun and Krishna refered to as song celestial"
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(gita)
docsearch = Chroma.from_texts(texts, embeddings)
def answer(query):
#docs = docsearch.similarity_search(query)
#out=docs[0].page_content
out=gita
return out
demo = gr.Interface(fn=answer, inputs='text',outputs='text',examples=[['song celestial']])
demo.launch()