import gradio as gr from langchain.vectorstores import Chroma from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.document_loaders import TextLoader embeddings = HuggingFaceEmbeddings() g=open('Gita.txt') Gita=g.read() #loader = TextLoader('Gita.txt') #documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(Gita) docsearch = Chroma.from_texts(texts, embeddings) def answer(query): docs = docsearch.similarity_search(query) out=docs[0].page_content return out demo = gr.Interface(fn=answer, inputs='text',outputs='text',examples=[['song celestial']]) demo.launch()