Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
from langchain.chat_models import ChatOpenAI
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
from langchain.chains import LLMChain
|
5 |
+
|
6 |
+
|
7 |
+
# Step 1: Load the Whisper model
|
8 |
+
model = whisper.load_model("base")
|
9 |
+
|
10 |
+
# Step 2: Function to convert speech to text
|
11 |
+
def speech_to_text(audio_file_path):
|
12 |
+
result = model.transcribe(audio_file_path)
|
13 |
+
return result["text"]
|
14 |
+
|
15 |
+
# Step 3: Use LangChain for further processing
|
16 |
+
def process_text_with_langchain(text):
|
17 |
+
# Define a simple prompt template and LLM
|
18 |
+
prompt_template = "Translate the following text to French: {text}"
|
19 |
+
prompt = PromptTemplate(input_variables=["text"], template=prompt_template)
|
20 |
+
|
21 |
+
llm = ChatOpenAI(model="gpt-4")
|
22 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
23 |
+
|
24 |
+
# Generate output
|
25 |
+
return chain.run(text)
|
26 |
+
|
27 |
+
# Example usage
|
28 |
+
audio_file_path = "path_to_your_audio_file.wav"
|
29 |
+
text = speech_to_text(audio_file_path)
|
30 |
+
print("Transcribed Text:", text)
|
31 |
+
|
32 |
+
# Further processing with LangChain
|
33 |
+
translated_text = process_text_with_langchain(text)
|
34 |
+
print("Translated Text:", translated_text)
|
35 |
+
|