Spaces:
Sleeping
Sleeping
File size: 11,889 Bytes
f0df96e e71e68a f0df96e 46d0a50 e71e68a 46d0a50 e71e68a cbab016 e71e68a cbab016 e71e68a cbab016 e71e68a cbab016 e71e68a cbab016 e71e68a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import gradio as gr # used for UI dev
import os # Built-in model to get/use the token for running huggingface source model which requires token to run
from typing import List, Dict # Built-in model
from langchain.text_splitter import ( # Text splitting strategies
RecursiveCharacterTextSplitter,#Text splitting strategies
CharacterTextSplitter,#Text splitting strategies
TokenTextSplitter#Text splitting strategies
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant # Vector database
from langchain_community.document_loaders import PyPDFLoader # Convert PDF to TEXT
from langchain.chains import ConversationalRetrievalChain # Entire retrival chain for conversation
from langchain_community.embeddings import HuggingFaceEmbeddings # Words to no
from langchain_huggingface import HuggingFaceEndpoint # API for generative model
from langchain.memory import ConversationBufferMemory # Chat History
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] # list of model
list_llm_simple = [os.path.basename(llm) for llm in list_llm] # display purpose
api_token = os.getenv("HF_TOKEN") # getting token
# Defining Chunk sizes
CHUNK_SIZES = {
"small": {"recursive": 512, "fixed": 512, "token": 256},
"medium": {"recursive": 1024, "fixed": 1024, "token": 512}
}
# passing Strategy , Chunk size , overlap
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"token": TokenTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
# def get_text_splitter(strategy, chunk_size=1024, chunk_overlap=64):
# if strategy == "recursive":
# return RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# elif strategy == "fixed":
# return CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# elif strategy == "token":
# return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# return None
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str):
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy]
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": lambda: FAISS.from_documents(splits, embeddings),
"chroma": lambda: Chroma.from_documents(splits, embeddings),
"qdrant": lambda: Qdrant.from_documents(
splits,
embeddings,
location=":memory:", # In memory database for qdrant
collection_name="pdf_docs"
)
}
return db_creators[db_choice]()
# Initialize Vector DB
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()):
"""Initialize vector database with error handling"""
try:
if not list_file_obj:
return None, "No files uploaded. Please upload PDF documents first."
list_file_path = [x.name for x in list_file_obj if x is not None]
if not list_file_path:
return None, "No valid files found. Please upload PDF documents."
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size)
if not doc_splits:
return None, "No content extracted from documents."
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created successfully using {splitting_strategy} splitting and {db_choice} vector database!"
except Exception as e:
return None, f"Error creating database: {str(e)}"
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize LLM chain with error handling"""
try:
if vector_db is None:
return None, "Please create vector database first."
llm_model = list_llm[llm_choice]
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
# Temporary memory
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True
)
return qa_chain, "LLM initialized successfully!"
except Exception as e:
return None, f"Error initializing LLM: {str(e)}"
def conversation(qa_chain, message, history):
"""Conversation function returning all required outputs"""
response = qa_chain.invoke({
"question": message,
"chat_history": [(hist[0], hist[1]) for hist in history]
})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
sources = response["source_documents"][:3]
source_contents = []
source_pages = []
for source in sources:
source_contents.append(source.page_content.strip())
source_pages.append(source.metadata.get("page", 0) + 1)
while len(source_contents) < 3:
source_contents.append("")
source_pages.append(0)
return (
qa_chain,
gr.update(value=""),
history + [(message, response_answer)],
source_contents[0],
source_pages[0],
source_contents[1],
source_pages[1],
source_contents[2],
source_pages[2]
)
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(
height=300,
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload PDF documents"
)
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
chunk_size = gr.Radio(
["small", "medium"],
label="Chunk Size",
value="medium"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
db_progress = gr.Textbox(
value="Not initialized",
show_label=False
)
gr.Markdown("<b>Step 2 - Configure LLM</b>")
with gr.Row():
llm_choice = gr.Radio(
list_llm_simple,
label="Available LLMs",
value=list_llm_simple[0],
type="index"
)
with gr.Row():
with gr.Accordion("LLM Parameters", open=False):
temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=128,
maximum=4096,
value=2048,
step=128,
label="Max Tokens"
)
top_k = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Top K"
)
with gr.Row():
init_llm_btn = gr.Button("Initialize LLM")
llm_progress = gr.Textbox(
value="Not initialized",
show_label=False
)
with gr.Column(scale=200):
gr.Markdown("<b>Step 3 - Chat with Documents</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Source References", open=False):
with gr.Row():
source1 = gr.Textbox(label="Source 1", lines=2)
page1 = gr.Number(label="Page")
with gr.Row():
source2 = gr.Textbox(label="Source 2", lines=2)
page2 = gr.Number(label="Page")
with gr.Row():
source3 = gr.Textbox(label="Source 3", lines=2)
page3 = gr.Number(label="Page")
with gr.Row():
msg = gr.Textbox(
placeholder="Ask a question",
show_label=False
)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton(
[msg, chatbot],
value="Clear Chat"
)
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, chunk_size, db_choice],
outputs=[vector_db, db_progress]
).then(
lambda x: gr.update(interactive=True) if x[0] is not None else gr.update(interactive=False),
inputs=[vector_db],
outputs=[init_llm_btn]
)
init_llm_btn.click(
initialize_llmchain,
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda x: gr.update(interactive=True) if x[0] is not None else gr.update(interactive=False),
inputs=[qa_chain],
outputs=[msg]
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
outputs=[chatbot, source1, page1, source2, page2, source3, page3]
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |