|
import gradio as gr |
|
import os |
|
from typing import List, Dict |
|
import numpy as np |
|
from datasets import load_dataset |
|
from langchain.text_splitter import ( |
|
RecursiveCharacterTextSplitter, |
|
CharacterTextSplitter, |
|
TokenTextSplitter |
|
) |
|
from langchain_community.vectorstores import FAISS, Chroma, Qdrant |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
from langchain.memory import ConversationBufferMemory |
|
from sentence_transformers import SentenceTransformer, util |
|
import torch |
|
from ragas import evaluate |
|
from ragas.metrics import ( |
|
ContextRecall, |
|
AnswerRelevancy, |
|
Faithfulness, |
|
ContextPrecision |
|
) |
|
import pandas as pd |
|
|
|
|
|
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
CHUNK_SIZES = { |
|
"small": {"recursive": 512, "fixed": 512, "token": 256}, |
|
"medium": {"recursive": 1024, "fixed": 1024, "token": 512} |
|
} |
|
|
|
|
|
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
class RAGEvaluator: |
|
def __init__(self): |
|
self.datasets = { |
|
"squad": "squad_v2", |
|
"msmarco": "ms_marco" |
|
} |
|
self.current_dataset = None |
|
self.test_samples = [] |
|
|
|
def load_dataset(self, dataset_name: str, num_samples: int = 10): |
|
"""Load a smaller subset of questions with proper error handling""" |
|
try: |
|
if dataset_name == "squad": |
|
dataset = load_dataset("squad_v2", split="validation") |
|
|
|
samples = dataset.select(range(0, 1000, 100))[:num_samples] |
|
|
|
self.test_samples = [] |
|
for sample in samples: |
|
|
|
if sample.get("answers") and isinstance(sample["answers"], dict) and sample["answers"].get("text"): |
|
self.test_samples.append({ |
|
"question": sample["question"], |
|
"ground_truth": sample["answers"]["text"][0], |
|
"context": sample["context"] |
|
}) |
|
|
|
elif dataset_name == "msmarco": |
|
dataset = load_dataset("ms_marco", "v2.1", split="dev") |
|
samples = dataset.select(range(0, 1000, 100))[:num_samples] |
|
|
|
self.test_samples = [] |
|
for sample in samples: |
|
|
|
if sample.get("answers") and sample["answers"]: |
|
self.test_samples.append({ |
|
"question": sample["query"], |
|
"ground_truth": sample["answers"][0], |
|
"context": sample["passages"][0]["passage_text"] |
|
if isinstance(sample["passages"], list) |
|
else sample["passages"]["passage_text"][0] |
|
}) |
|
|
|
self.current_dataset = dataset_name |
|
|
|
|
|
return { |
|
"dataset": dataset_name, |
|
"num_samples": len(self.test_samples), |
|
"sample_questions": [s["question"] for s in self.test_samples[:3]], |
|
"status": "success" |
|
} |
|
|
|
except Exception as e: |
|
print(f"Error loading dataset: {str(e)}") |
|
return { |
|
"dataset": dataset_name, |
|
"error": str(e), |
|
"status": "failed" |
|
} |
|
|
|
def evaluate_configuration(self, vector_db, qa_chain, splitting_strategy: str, chunk_size: str) -> Dict: |
|
"""Evaluate with progress tracking and error handling""" |
|
if not self.test_samples: |
|
return {"error": "No dataset loaded"} |
|
|
|
results = [] |
|
total_questions = len(self.test_samples) |
|
|
|
|
|
for i, sample in enumerate(self.test_samples): |
|
print(f"Evaluating question {i+1}/{total_questions}") |
|
|
|
try: |
|
response = qa_chain.invoke({ |
|
"question": sample["question"], |
|
"chat_history": [] |
|
}) |
|
|
|
results.append({ |
|
"question": sample["question"], |
|
"answer": response["answer"], |
|
"contexts": [doc.page_content for doc in response["source_documents"]], |
|
"ground_truths": [sample["ground_truth"]] |
|
}) |
|
except Exception as e: |
|
print(f"Error processing question {i+1}: {str(e)}") |
|
continue |
|
|
|
if not results: |
|
return { |
|
"configuration": f"{splitting_strategy}_{chunk_size}", |
|
"error": "No successful evaluations", |
|
"questions_evaluated": 0 |
|
} |
|
|
|
try: |
|
|
|
eval_dataset = Dataset.from_list(results) |
|
metrics = [ContextRecall(), AnswerRelevancy(), Faithfulness(), ContextPrecision()] |
|
scores = evaluate(eval_dataset, metrics=metrics) |
|
|
|
return { |
|
"configuration": f"{splitting_strategy}_{chunk_size}", |
|
"questions_evaluated": len(results), |
|
"context_recall": float(scores['context_recall']), |
|
"answer_relevancy": float(scores['answer_relevancy']), |
|
"faithfulness": float(scores['faithfulness']), |
|
"context_precision": float(scores['context_precision']), |
|
"average_score": float(np.mean([ |
|
scores['context_recall'], |
|
scores['answer_relevancy'], |
|
scores['faithfulness'], |
|
scores['context_precision'] |
|
])) |
|
} |
|
except Exception as e: |
|
return { |
|
"configuration": f"{splitting_strategy}_{chunk_size}", |
|
"error": str(e), |
|
"questions_evaluated": len(results) |
|
} |
|
|
|
|
|
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64): |
|
splitters = { |
|
"recursive": RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
), |
|
"fixed": CharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
), |
|
"token": TokenTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
) |
|
} |
|
return splitters.get(strategy) |
|
|
|
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str): |
|
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy] |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
|
|
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
def create_db(splits, db_choice: str = "faiss"): |
|
embeddings = HuggingFaceEmbeddings() |
|
db_creators = { |
|
"faiss": lambda: FAISS.from_documents(splits, embeddings), |
|
"chroma": lambda: Chroma.from_documents(splits, embeddings), |
|
"qdrant": lambda: Qdrant.from_documents( |
|
splits, |
|
embeddings, |
|
location=":memory:", |
|
collection_name="pdf_docs" |
|
) |
|
} |
|
return db_creators[db_choice]() |
|
|
|
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()): |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size) |
|
vector_db = create_db(doc_splits, db_choice) |
|
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!" |
|
|
|
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
llm_model = list_llm[llm_choice] |
|
|
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever = vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
memory=memory, |
|
return_source_documents=True |
|
) |
|
return qa_chain, "LLM initialized successfully!" |
|
|
|
def conversation(qa_chain, message, history): |
|
"""Fixed conversation function returning all required outputs""" |
|
response = qa_chain.invoke({ |
|
"question": message, |
|
"chat_history": [(hist[0], hist[1]) for hist in history] |
|
}) |
|
|
|
response_answer = response["answer"] |
|
if "Helpful Answer:" in response_answer: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
|
|
|
|
sources = response["source_documents"][:3] |
|
source_contents = [] |
|
source_pages = [] |
|
|
|
|
|
for source in sources: |
|
source_contents.append(source.page_content.strip()) |
|
source_pages.append(source.metadata.get("page", 0) + 1) |
|
|
|
|
|
while len(source_contents) < 3: |
|
source_contents.append("") |
|
source_pages.append(0) |
|
|
|
|
|
return ( |
|
qa_chain, |
|
gr.update(value=""), |
|
history + [(message, response_answer)], |
|
source_contents[0], |
|
source_pages[0], |
|
source_contents[1], |
|
source_pages[1], |
|
source_contents[2], |
|
source_pages[2] |
|
) |
|
|
|
def demo(): |
|
evaluator = RAGEvaluator() |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
|
|
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.Tab("Custom PDF Chat"): |
|
with gr.Row(): |
|
with gr.Column(scale=86): |
|
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>") |
|
with gr.Row(): |
|
document = gr.Files( |
|
height=300, |
|
file_count="multiple", |
|
file_types=["pdf"], |
|
interactive=True, |
|
label="Upload PDF documents" |
|
) |
|
|
|
with gr.Row(): |
|
splitting_strategy = gr.Radio( |
|
["recursive", "fixed", "token"], |
|
label="Text Splitting Strategy", |
|
value="recursive" |
|
) |
|
db_choice = gr.Radio( |
|
["faiss", "chroma", "qdrant"], |
|
label="Vector Database", |
|
value="faiss" |
|
) |
|
chunk_size = gr.Radio( |
|
["small", "medium"], |
|
label="Chunk Size", |
|
value="medium" |
|
) |
|
|
|
with gr.Row(): |
|
db_btn = gr.Button("Create vector database") |
|
db_progress = gr.Textbox( |
|
value="Not initialized", |
|
show_label=False |
|
) |
|
|
|
gr.Markdown("<b>Step 2 - Configure LLM</b>") |
|
with gr.Row(): |
|
llm_choice = gr.Radio( |
|
list_llm_simple, |
|
label="Available LLMs", |
|
value=list_llm_simple[0], |
|
type="index" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("LLM Parameters", open=False): |
|
temperature = gr.Slider( |
|
minimum=0.01, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
max_tokens = gr.Slider( |
|
minimum=128, |
|
maximum=4096, |
|
value=2048, |
|
step=128, |
|
label="Max Tokens" |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
value=3, |
|
step=1, |
|
label="Top K" |
|
) |
|
|
|
with gr.Row(): |
|
init_llm_btn = gr.Button("Initialize LLM") |
|
llm_progress = gr.Textbox( |
|
value="Not initialized", |
|
show_label=False |
|
) |
|
|
|
with gr.Column(scale=200): |
|
gr.Markdown("<b>Step 3 - Chat with Documents</b>") |
|
chatbot = gr.Chatbot(height=505) |
|
|
|
with gr.Accordion("Source References", open=False): |
|
with gr.Row(): |
|
source1 = gr.Textbox(label="Source 1", lines=2) |
|
page1 = gr.Number(label="Page") |
|
with gr.Row(): |
|
source2 = gr.Textbox(label="Source 2", lines=2) |
|
page2 = gr.Number(label="Page") |
|
with gr.Row(): |
|
source3 = gr.Textbox(label="Source 3", lines=2) |
|
page3 = gr.Number(label="Page") |
|
|
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
placeholder="Ask a question", |
|
show_label=False |
|
) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.ClearButton( |
|
[msg, chatbot], |
|
value="Clear Chat" |
|
) |
|
|
|
|
|
with gr.Tab("RAG Evaluation"): |
|
with gr.Row(): |
|
dataset_choice = gr.Dropdown( |
|
choices=list(evaluator.datasets.keys()), |
|
label="Select Evaluation Dataset", |
|
value="squad" |
|
) |
|
load_dataset_btn = gr.Button("Load Dataset") |
|
|
|
with gr.Row(): |
|
dataset_info = gr.JSON(label="Dataset Information") |
|
|
|
with gr.Row(): |
|
eval_splitting_strategy = gr.Radio( |
|
["recursive", "fixed", "token"], |
|
label="Text Splitting Strategy", |
|
value="recursive" |
|
) |
|
eval_chunk_size = gr.Radio( |
|
["small", "medium"], |
|
label="Chunk Size", |
|
value="medium" |
|
) |
|
|
|
with gr.Row(): |
|
evaluate_btn = gr.Button("Run Evaluation") |
|
evaluation_results = gr.DataFrame(label="Evaluation Results") |
|
|
|
|
|
db_btn.click( |
|
initialize_database, |
|
inputs=[document, splitting_strategy, chunk_size, db_choice], |
|
outputs=[vector_db, db_progress] |
|
) |
|
|
|
init_llm_btn.click( |
|
initialize_llmchain, |
|
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db], |
|
outputs=[qa_chain, llm_progress] |
|
) |
|
|
|
msg.submit( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3] |
|
) |
|
|
|
submit_btn.click( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3] |
|
) |
|
|
|
def load_dataset_handler(dataset_name): |
|
try: |
|
result = evaluator.load_dataset(dataset_name) |
|
if result.get("status") == "success": |
|
return { |
|
"dataset": result["dataset"], |
|
"samples_loaded": result["num_samples"], |
|
"example_questions": result["sample_questions"], |
|
"status": "ready for evaluation" |
|
} |
|
else: |
|
return { |
|
"error": result.get("error", "Unknown error occurred"), |
|
"status": "failed to load dataset" |
|
} |
|
except Exception as e: |
|
return { |
|
"error": str(e), |
|
"status": "failed to load dataset" |
|
} |
|
|
|
def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain): |
|
if not evaluator.current_dataset: |
|
return pd.DataFrame() |
|
|
|
results = evaluator.evaluate_configuration( |
|
vector_db=vector_db, |
|
qa_chain=qa_chain, |
|
splitting_strategy=splitting_strategy, |
|
chunk_size=chunk_size |
|
) |
|
|
|
return pd.DataFrame([results]) |
|
|
|
load_dataset_btn.click( |
|
load_dataset_handler, |
|
inputs=[dataset_choice], |
|
outputs=[dataset_info] |
|
) |
|
|
|
evaluate_btn.click( |
|
run_evaluation, |
|
inputs=[ |
|
dataset_choice, |
|
eval_splitting_strategy, |
|
eval_chunk_size, |
|
vector_db, |
|
qa_chain |
|
], |
|
outputs=[evaluation_results] |
|
) |
|
|
|
|
|
clear_btn.click( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
outputs=[chatbot, source1, page1, source2, page2, source3, page3] |
|
) |
|
|
|
|
|
demo.queue().launch(debug=True) |
|
|
|
if __name__ == "__main__": |
|
demo() |