sudip1987's picture
Update app.py
b9acd00 verified
import gradio as gr
from PIL import Image # to open / display image
import os
import sqlite3 # DB for SQL operation, analytical db
import google.generativeai as genai
import time #
# Initialize Gemini
gemini_key = os.getenv("gemini_key")
genai.configure(api_key=gemini_key)
genai_model = genai.GenerativeModel('gemini-pro')
class SQLPromptModel:
def __init__(self, database):
# Initialize with database file path and create connection
self.database = database
self.conn = sqlite3.connect(self.database) # create connection to DB
def fetch_table_schema(self, table_name):
# Get database table structure
# In order to execute SQL statements and fetch results from SQL queries,
#we will need to use a database cursor. Call con.cursor() to create the Cursor:
cursor = self.conn.cursor()
# PRAGMA table_info returns:
# (id, name, type, notnull, default_value, primary_key)
cursor.execute(f"PRAGMA table_info({table_name})")
schema = cursor.fetchall()
if schema:
return schema
else:
return None
#return schema if schema else None
def text2sql_gemini(self, schema, def_query, user_query=None):
# Convert table columns to string format
table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema])
#col[1] - column name/index
#col[2] - column data type
# Create prompt for Gemini AI
prompt = f"""Below are SQL table schemas paired with instructions that describe a task.
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
### Instruction: {def_query} ###
Input: CREATE TABLE sql_pdf({table_columns});
### Response: (Return only generated query based on def_query , nothing extra)"""
# Replace default prompt with user input if provided
if user_query is not None:
prompt = prompt.replace(def_query, user_query + " ")
# Get SQL query from Gemini
completion = genai_model.generate_content(prompt)
generated_query = completion.text
# Extract just the SQL query
start_index = generated_query.find("SELECT")
end_index = generated_query.find(";", start_index) + 1
if start_index != -1 and end_index != 0:
return generated_query[start_index:end_index]
return generated_query
def execute_query(self, query):
# Execute SQL query and get results
cur = self.conn.cursor()
cur.execute(query)
# Get column names
print(cur.description)
columns = [header[0] for header in cur.description]
# Get all rows
rows = [row for row in cur.fetchall()]
cur.close()
self.conn.commit()
return rows, columns
def execute_sql_query(user_query):
# Database file path
database = r"sql_pdf.db"
sql_model = SQLPromptModel(database)
# Default prompt if none provided
def_query = "Give complete details of properties in India"
# Try operation up to 3 times
for _ in range(3):
try:
# Get database structure
table_schema = sql_model.fetch_table_schema("sql_pdf")
if table_schema:
# Generate and execute query
# strip() -> removed initial & after query spaces
if user_query.strip():
query = sql_model.text2sql_gemini(table_schema, def_query, user_query)
else:
query = sql_model.text2sql_gemini(table_schema, def_query, def_query)
rows, columns = sql_model.execute_query(query)
# Return formatted results
return {"Query": query, "Results": rows, "Columns": columns}
else:
return {"error": "Table schema not found."}
except Exception as e:
print(f"An error occurred: {e}")
time.sleep(1) # Wait 1 second before retry
return {"error": "Failed to execute query after 3 retries."}
# Load the image
# Load database schema image
image = Image.open(os.path.join(os.path.abspath(''), "house_excel_sheet.png"))
# Create web interface
with gr.Blocks(title="House Database Query") as demo:
# Header Markdown -> descrption
# one # -> heading
# two ## -> sub heading
# three ### -> sub minor heading
gr.Markdown("# House Database Query System")
# Display database schema image
gr.Image(image)
# Description
# Markdown -> description/note
# three ### -> sub minor heading
gr.Markdown("""### The database contains information about different properties including their fundamental details.
You can query this database using natural language.""")
# Input section
# gr.Row() -> Create new row layout to organize components
# horizontal
with gr.Row():
query_input = gr.Textbox(
lines=2,# 2 lines max will be visible
label="Database Query",
# Display hints for user until they start typing
placeholder="Enter your query or choose from examples below. Default: 'Properties in India'"
)
# Submit button section
with gr.Row():
# variant="primary" -> default style/color
submit_btn = gr.Button("Submit Query", variant="primary")
# Results section
with gr.Row():
query_output = gr.JSON(label="Query Results")
# Connect button click to query function
# Click event
submit_btn.click(
fn=execute_sql_query,
inputs=query_input,
outputs=query_output
)
# Example queries section
# gr.Examples(
# examples=[
# "Properties in France",
# "Properties greater than an acre",
# "Properties with more than 400 bedrooms"
# ],
# inputs=query_input,
# outputs=query_output,
# fn=execute_sql_query
# )
# Example queries section
example = gr.Examples(
examples=[
"Properties in France",
"Properties greater than an acre",
"Properties with more than 400 bedrooms"
],
inputs=query_input
# outputs=query_output,
# fn=execute_sql_query
)
# When calling/running directly, script gets executed
# why -> this mechanishm used to prevent unintended execution of code
if __name__ == "__main__":
demo.launch(share=True)