import gradio as gr from PIL import Image # to open / display image import os import sqlite3 # DB for SQL operation, analytical db import google.generativeai as genai import time # # Initialize Gemini gemini_key = os.getenv("gemini_key") genai.configure(api_key=gemini_key) genai_model = genai.GenerativeModel('gemini-pro') class SQLPromptModel: def __init__(self, database): # Initialize with database file path and create connection self.database = database self.conn = sqlite3.connect(self.database) # create connection to DB def fetch_table_schema(self, table_name): # Get database table structure # In order to execute SQL statements and fetch results from SQL queries, #we will need to use a database cursor. Call con.cursor() to create the Cursor: cursor = self.conn.cursor() # PRAGMA table_info returns: # (id, name, type, notnull, default_value, primary_key) cursor.execute(f"PRAGMA table_info({table_name})") schema = cursor.fetchall() if schema: return schema else: return None #return schema if schema else None def text2sql_gemini(self, schema, def_query, user_query=None): # Convert table columns to string format table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema]) #col[1] - column name/index #col[2] - column data type # Create prompt for Gemini AI prompt = f"""Below are SQL table schemas paired with instructions that describe a task. Using valid SQLite, write a response that appropriately completes the request for the provided tables. ### Instruction: {def_query} ### Input: CREATE TABLE sql_pdf({table_columns}); ### Response: (Return only generated query based on def_query , nothing extra)""" # Replace default prompt with user input if provided if user_query is not None: prompt = prompt.replace(def_query, user_query + " ") # Get SQL query from Gemini completion = genai_model.generate_content(prompt) generated_query = completion.text # Extract just the SQL query start_index = generated_query.find("SELECT") end_index = generated_query.find(";", start_index) + 1 if start_index != -1 and end_index != 0: return generated_query[start_index:end_index] return generated_query def execute_query(self, query): # Execute SQL query and get results cur = self.conn.cursor() cur.execute(query) # Get column names print(cur.description) columns = [header[0] for header in cur.description] # Get all rows rows = [row for row in cur.fetchall()] cur.close() self.conn.commit() return rows, columns def execute_sql_query(user_query): # Database file path database = r"sql_pdf.db" sql_model = SQLPromptModel(database) # Default prompt if none provided def_query = "Give complete details of properties in India" # Try operation up to 3 times for _ in range(3): try: # Get database structure table_schema = sql_model.fetch_table_schema("sql_pdf") if table_schema: # Generate and execute query # strip() -> removed initial & after query spaces if user_query.strip(): query = sql_model.text2sql_gemini(table_schema, def_query, user_query) else: query = sql_model.text2sql_gemini(table_schema, def_query, def_query) rows, columns = sql_model.execute_query(query) # Return formatted results return {"Query": query, "Results": rows, "Columns": columns} else: return {"error": "Table schema not found."} except Exception as e: print(f"An error occurred: {e}") time.sleep(1) # Wait 1 second before retry return {"error": "Failed to execute query after 3 retries."} # Load the image # Load database schema image image = Image.open(os.path.join(os.path.abspath(''), "house_excel_sheet.png")) # Create web interface with gr.Blocks(title="House Database Query") as demo: # Header Markdown -> descrption # one # -> heading # two ## -> sub heading # three ### -> sub minor heading gr.Markdown("# House Database Query System") # Display database schema image gr.Image(image) # Description # Markdown -> description/note # three ### -> sub minor heading gr.Markdown("""### The database contains information about different properties including their fundamental details. You can query this database using natural language.""") # Input section # gr.Row() -> Create new row layout to organize components # horizontal with gr.Row(): query_input = gr.Textbox( lines=2,# 2 lines max will be visible label="Database Query", # Display hints for user until they start typing placeholder="Enter your query or choose from examples below. Default: 'Properties in India'" ) # Submit button section with gr.Row(): # variant="primary" -> default style/color submit_btn = gr.Button("Submit Query", variant="primary") # Results section with gr.Row(): query_output = gr.JSON(label="Query Results") # Connect button click to query function # Click event submit_btn.click( fn=execute_sql_query, inputs=query_input, outputs=query_output ) # Example queries section # gr.Examples( # examples=[ # "Properties in France", # "Properties greater than an acre", # "Properties with more than 400 bedrooms" # ], # inputs=query_input, # outputs=query_output, # fn=execute_sql_query # ) # Example queries section example = gr.Examples( examples=[ "Properties in France", "Properties greater than an acre", "Properties with more than 400 bedrooms" ], inputs=query_input # outputs=query_output, # fn=execute_sql_query ) # When calling/running directly, script gets executed # why -> this mechanishm used to prevent unintended execution of code if __name__ == "__main__": demo.launch(share=True)